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The goal of this paper is face recognition – from either a single photograph
or from a set of faces tracked in a video. Recent progress in this area has
been due to two factors: (i) end to end learning for the task using convolu-
tional neural networks (CNNs), and (ii) the availability of very large scale
training datasets. We make two contributions: first, we show how a very
large scale dataset (2.6M images spanning more than 2.6K identities) can
be constructed by semi-automatic annotations with humans in the loop,
investigating the trade-off between annotation purity and cost; second, we
introduce a very deep convolutional neural network and a corresponding
training procedure that achieve face recognition accuracy comparable to
the current state of the art on public benchmarks such as “Labelled Faces
In the Wild” and “YouTube Faces Dataset”, while at the same time using
a fraction of the data used by competitors.

Figure 1: Example images from our dataset.

The availability of large scale datasets such as the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) [4], MIT places [10] and
Microsoft COCOA [2] have been instrumental in the giant CNN based
leapforward we have witnessed in the community. Such datasets however,
were missing from the face recognition domain. Most recent advance-
ment in the field have been from the internet giants like Facebook and
Google [5, 8, 9]. For example, the most recent face recognition method
by Google [5] was trained using 200 million images and eight million
unique identities. The size of this dataset is almost three orders of magni-
tude larger than any publicly available face dataset (see Table 1). The first
part of this paper proposes a procedure to create a reasonably large face
dataset whilst requiring only a limited amount of person-power for anno-
tation. One of the key ideas was to use weaker classifiers to rank the data
presented to the annotators. This procedure has been developed for faces,
but is evidently suitable for other object classes as well as fine grained
tasks. We employ this procedure to build a dataset with over two million
faces, and will make this freely available to the research community.

Dataset People Images
LFW 5,749 13,233
WDRef [1] 2,995 99,773
CelebFaces [7] 10,177 202,599
Ours 2,622 2.6M
FaceBook [8] 4,030 4.4M
Google [5] 8M 200M

Table 1: Dataset comparisons: Our dataset has the largest collection
of face images outside industrial datasets by Goole, Facebook, or Baidu,
which are not publicly available.

The second part of this paper investigates various CNN architectures
for face identification and verification, including exploring face alignment
and learning the task specific embeddings, using the novel dataset for
training. Many recent works on face recognition have proposed numer-
ous variants of CNN architectures for faces, and we assess some of these
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Figure 2: ROC curve for the LFW dataset unrestricted protocol setting.

modeling choices in order to filter what is important from irrelevant de-
tails . The outcome is a much simpler and yet effective network architec-
ture without any embellishments but with appropriate training, achieving
near state-of-the-art results on all popular image and video face recogni-
tion benchmarks using a single network (see Table 2 and 3). Again, this
is a conclusion that may be applicable to many other tasks.

No. Method Images Networks Acc.
1 Fisher Vector Faces [6] - - 93.10
2 DeepFace [8] 4M 3 97.35
3 Fusion [9] 500M 5 98.37
4 DeepID-2,3 200 99.47
5 FaceNet [5] 200M 1 98.87
6 FaceNet [5] + Alignment 200M 1 99.63
7 Ours 2.6M 1 98.95

Table 2: LFW unrestricted setting. Left: we achieve comparable re-
sults to the state of the art whilst requiring less data (than DeepFace and
FaceNet) and using a simpler network architecture (than DeepID-2,3).
Note, DeepID3 results are for the test set with label errors corrected –
which has not been done by any other method.

No. Method Images Networks 100%- EER Acc.
1 Video Fisher Vector Faces [3] - - 87.7 83.8
2 DeepFace [8] 4M 1 91.4 91.4
3 DeepID-2,2+,3 200 - 93.2
4 FaceNet [5] + Alignment 200M 1 - 95.1
5 Ours 2.6M 1 92.8 91.6
6 Ours + Embedding learning 2.6M 1 97.4 97.3

Table 3: Results on the Youtube Faces Dataset, unrestricted setting.
The value of k indicates the number of faces used to represent each video.
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