Learning the Structure of Deep Architectures Using ℓ_1 Regularization

Praveen Kulkarni1
Praveen.Kulkarni@technicolor.com
Joaquin Zepeda1
Joaquin.Zepeda@technicolor.com
Frederic Jurie2
frederic.jurie@unicaen.fr
Patrick Pérez1
Patrick.Perez@technicolor.com
Louis Chevallier3
Louis.Chevallier@technicolor.com

1975 avenue des Champs Blancs,
CS 17616, 35576 Cesson Sévigné, France
http://www.technicolor.com

2University of Caen Basse-Normandie,
CNRS UMR 6072, ENSICAEN, France http://www.unicaen.fr

Our proposed approach is illustrated in Fig. 1. The architecture we consider consists of a sequence of fully-connected layers, with a diagonal matrix between them. We present a method that automatically selects the size of the weight matrices inside fully-connected layers indexed by $j = 1,\ldots,J$. Our approach relies on a regularization penalty term consisting of the ℓ_1 norm of the diagonal entries of diagonal matrices inserted between the fully-connected layers. Using such a penalty term forces the diagonal matrices to be sparse, accordingly selecting the effective number of rows and columns in the weights matrices of adjacent layers. We present a simple algorithm to solve the proposed formulation and demonstrate it experimentally on a standard image classification benchmark.

Figure 1: Proposed deep processing pipeline. Given an image representation, e.g., the output of the convolutional part of a pre-trained state-of-art DNN, J fully connected layers, each involving a diagonal matrix that controls its effective dimensions, are jointly learned with final linear SVM classifiers.

In the above expression, we have used (i) $l(x)$ to denote the hinge loss, given by $\max(0,1-x)$; (ii) $||D||_2$ to denote the trace norm, given by $\sum_{i,j} |D_{ij}|$ for the case of diagonal D; and (iii) $||M||_F^2$ to denote the squared Frobenius norm $\sum_{i,j} M_{ij}^2$.

To illustrate the motivation behind this learning objective, we note first that the terms inside the summation over k in (3) are recognizable as an SVM objective for class k, where the scalar C is the SVM regularization parameter. The feature vectors used within this SVM objective are given by $f_j \circ \ldots \circ f_1(x_i)$, which depends on $(\{M^j, b^j, D^j\})_{j=1}^J$. Hence we are learning the classifiers jointly with the feature extractor used to represent the input images.

The two regularization terms comprised of summations over j in (3) have two important purposes. First is to keep the SVM terms from decreasing indefinitely. A second important purpose is to automatically select the shapes of the weights matrices M^j and b^j and ℓ_1 norms applied to diagonal matrices such as D^j are sparsity inducing norms.

In order to minimize (3), we will employ a block-coordinate SGD approach. We evaluate our method on Pascal VOC 2007 dataset and compare it against various state-of-the-art algorithms. Our learning algorithm is governed by three important terms: the penalty weights μ and δ and the number of training epochs T. The number of training epochs is determined using the validation set. Further, we evaluate the performance of our method as a function of the number of layers J in the architecture.

In Fig. 2, we plot both the sparsity for all layers and the corresponding test and validation mAPs when varying the penalty weight δ. Note that increasing δ drastically increases the number of zero diagonal entries in the architecture while only slightly affecting the classification performance.

