We consider the generalization of Wide (geometric) Baseline Stereo to WxBs, a two-view image matching problem where two or more of the image formation and acquisition properties significantly change, i.e. they have a wide baseline.

The following single wide baseline stereo problems and their combinations are considered: illumination (WBS) – difference in position, direction, number, intensity and wavelength of light sources; geometry (WGBS) – difference in camera and object pose, scale and resolution - the “classical” WBS; sensor (WBS) – change in sensor type: visible, IR, MR; noise, image preprocessing algorithms inside the camera, etc; appearance (WABS) – difference in the object appearance because of time or seasonal changes, occlusions, turbulent air, etc.

We present a new public dataset (see Figure 1) with ground truth for Iter. a matcher for wide multiple baseline stereo

\begin{algorithm}
\caption{MODS-WxBS}
\begin{algorithmic}
\Require I_1, I_2 – two images; θ_0 – minimum required number of matches; S_{max} – maximum number of iterations.
\Ensure a list of corresponding local features.
\While {\left(\frac{N_{matches}}{\theta_0} < 1 \right) \text{ and } (\text{Iter} < S_{max})}
\For {I_1 and I_2 separately}
\State 1. Generate synthetic views acc. to the scale-tilt-rotation-detector setup for Iter.
\State 2. Detect local features using adaptive threshold.
\State 3. Extract rotation invariant descriptors with: $3a$ rSIFT and $3b$ hrSIFT
\State 4. Reproject local features to I_1.
\EndFor
\State 5. Generate tentative correspondences based on the first geom.inconsistent rule for rSIFT and hrSIFT separately using KD-tree
\State 6. Filter duplicates
\State 7. Geometric verification of all TC with modified DEGENSAC estimating F or H
\State 8. Check geom. consistency of the LAFs with est. F or H
\EndWhile
\end{algorithmic}
\end{algorithm}

We propose a novel algorithm for two-view matching in challenging conditions – WxBS-MODS (Algorithm 1). It significantly outperforms the state-of-the-art matchers: ASIFT [2], Dual Bootstrap (DBstrap) [3] and MODS [1] on various WxBS problems without a significant loss of speed (Table 1).

![Examples of image pairs from the WxBS dataset](image.png)

Table 1: Comparison of MODS-WxBS, ASIFT and Dual Bootstrap on public datasets.

<table>
<thead>
<tr>
<th>Alg. / Dataset</th>
<th>EF # time</th>
<th>EVD # time</th>
<th>MMS # time</th>
<th>WGBS # time</th>
<th>WGBS # time</th>
<th>WGBS # time</th>
<th>WGBS # time</th>
<th>Past # time</th>
<th>OxAff # time</th>
<th>SymB # time</th>
<th>GDB # time</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASIFT</td>
<td>23</td>
<td>27</td>
<td>15</td>
<td>18</td>
<td>18</td>
<td>12</td>
<td>18</td>
<td>52</td>
<td>0</td>
<td>52</td>
<td>0</td>
</tr>
<tr>
<td>MODS</td>
<td>33</td>
<td>4.8</td>
<td>15</td>
<td>11</td>
<td>11</td>
<td>2</td>
<td>41</td>
<td>31</td>
<td>11</td>
<td>31</td>
<td>11</td>
</tr>
<tr>
<td>DBstrap</td>
<td>31</td>
<td>26</td>
<td>0</td>
<td>18</td>
<td>79</td>
<td>9.3</td>
<td>11</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
</tr>
</tbody>
</table>

The number of matched image pairs (left) and the average running time (right).