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Abstract

We present a fully unsupervised approach for the discovery of i) task relevant objects
and ii) how these objects have been used. Given egocentric video from multiple opera-
tors, the approach can discover objects with which the users interact, both static objects
such as a coffee machine as well as movable ones such as a cup. Importantly, the com-
mon modes of interaction for discovered objects are also found. We investigate using
appearance, position, motion and attention, and present results using each and a combi-
nation of relevant features. Results show that the method is capable of discovering 95%
of task relevant objects on a variety of daily tasks such as initialising a printer, preparing
a coffee and setting up a gym machine. In addition, the approach enables the automatic
generation of guidance video on how these objects have been used before.

1 Introduction

Humans learn how to deal with their surroundings through several means, one of which is
observing others. An intelligent agent that aims to learn objects in an environment, and more
importantly how these objects have been used, is of importance in robotics and assistive
systems. This is intrinsically distinct from learning a speci�c task or an activity, as the same
object can be used in many tasks, while the ways in which one object can be interacted with
are usually limited to a �nite set of possible interactions.

This work attempts, tofully unsupervised, discover objects and how they have been used
from observing several operators. As opposed to discovering all objects in the environment,
we focus on discovering task relevant objects. ATask Relevant Object (TRO)is an object,
or part of an object, with which a person interacts during task performance. For example, a
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Position Appearance Motion

Egocentric views
from multiple users

Automatically generated
How-To video guides

triggered by looking

Figure 1: Given egocentric videos from multiple users, three strands of information (posi-
tion, appearance and motion) are used to discover task relevant objectsfully unsupervised.
Harvested video snippets show how a discovered object is used for an assistive mode.

person using a printer may interact with the paper drawer and/or the keypad while operating
it. A system that aims to discover TROs would attempt to discover these objects (drawer and
keypad) as opposed to the full machine or all its parts (Fig.1). Importantly, we also introduce
the termModes of Interaction (MOI) to refer to the different ways in which TROs are used.
Say, a cup can be lifted, washed, or poured into. All these are different MOIs associated to the
cup. When harvesting interactions with the same object from multiple operators, common
MOIs can be discovered.

In attempting the discovery of TROs and their MOIs, here we particularly focus on an
egocentric view of the world. This �rst-person view of the world offers a unique perspective
on object-level interactions. With the introduction of wearable systems, egocentric videos
from multiple individuals around a common environment will become easily and widely
available. But crucially we note that most available systems to analyse object-interactions
from �rst-person view [5, 11, 23, 26, 28, 29, 34] expect the objects involved to be known in
advance. The better way is to extract relevant information automatically. Recently, a shift
towards automatic discovery of objects for video summaries [25] or action recognition [9]
has been witnessed, to which this work contributes. In this work, egocentric videos of mul-
tiple operators performing tasks around a common environment are recorded, along with the
operators' gaze. We provide a fully unsupervised method to discover TROs, and identify
common MOIs for each object. Additionally and importantly, we are able to harvest suit-
able video snippets representative of each MOI. These can be used, for example, to provide
guidance to other users exploring the environment. Fully closing the cycle of identifying
what objects are relevant and how these can be used has not been attempted before, to our
knowledge, in an unsupervised manner.

2 Unsupervised Object Discovery - a Review

Unsupervised object discovery refers to grouping visual information into meaningful clusters
that correspond to an entity worth discovering. We attempt to differentiate between the
various ways in which entities can be discovered from egocentric video; appearance, position
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and motion. Figure2 envisages what can be discovered if each, or a combination, of these
information is used in the grouping. Previous works on unsupervised object discovery are
reviewed here based on the information they use.
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Figure 2: Using appear-
ance, position, motion and
combinations for object
discovery

Appearance: Appearance, of object and context, are often
used to discovercategories- multiple instances are grouped
based on visual similarity (ref. recent survey [38]). Ap-
plied mostly to datasets of images, the aim is to group images
(e.g. [16]) or segments of images (e.g. [30]) into object cate-
gories such as cars or giraffes. In [16], for example, Harris-
af�ne interest points with SIFT descriptors are used to con-
struct a visual similarity network. Edges between features are
constrained by the geometric consistency of matching pairs
of images, and weights are calculated to minimise the defor-
mation cost in image matching. The network is used to �nd
image groupings based on nodes' structural similarity and a
PageRank algorithm. Similar approaches were applied to in-
stance discovery [15] - colour, texture and shape-based fea-
tures are used to construct a network of �nely-segmented re-
gions. While a very interesting approach with promising re-
sults, [15] assumes that objects of daily living are moveable. A
computer screen, for example, needs to be moved to a different
background to enable its discovery. This assumption is also made by other works [32, 33].
Many objects of daily living tasks such as a coffee machine or an electric socket remain
�xed to their surroundings. Moreover, all these approaches [15, 16, 38] assume the dataset
contains a single instance of an object of interest per image. When using video as input, a
signi�cant number of frames might not contain TROs as the user roams around an environ-
ment.
Position: The position, relative to an environment, can be grouped into hot-spots. Ahot
spotis a position at which object interaction takes place. It can refer to a �xed object in the
scene such as a kitchen sink, or a temporary position of a moveable object. Position has been
used in [13] to discover objects, by aligning two point clouds and identifying changes that
correspond to objects that have been placed or removed.
Motion: Motion in egocentric video is a result of the wearer's self-motion or that of objects
in an environment. Motion features can be grouped into actions, such as putting, drink-
ing or stirring. The bag of quantised features approach for sparse spatio-temporal interest
points [22] or dense features [39] has produced state-of-the-art results in action recogni-
tion. In egocentric video, motion descriptors have also been used to recognise actions, either
full-body action (such as in sports [17]) or object interactions [9, 23, 25, 35, 36].
Combinations: Using multiple cues has been recently attempted to improve recognition
results. When combiningappearance with position, one can separate two instances of a mug
when viewed in different locations. In Colletet al.[2], RGB-D images collected from a robot
in a common environment were �rst separated into discrete locations (rooms, in their case),
then appearance and depth data are clustered to extract instances. The approach assumes that
all objects are placed on a planar surface (e.g. table-top) and employs a prior on the object's
shape and size. Combiningappearance with motionhas also been attempted [9, 40]. In [9],
an action is identi�ed by the change in appearance of the object before and after the action is
performed. In [23], objects of `importance' are segmented from egocentric video sequences
using appearance and motion features. The approach learns `objects of importance' from a
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manually labelled training set (collected via crowd sourcing).
Attention: Attention is an important aspect to support relevance in tasks. Common ap-
proaches in egocentric vision include i) segmenting the area surrounding the user's hand [9,
10, 23], ii) extracting foreground regions through frame stabilisation or scene planarity as-
sumptions [29, 36] or iii) detecting `object-like' regions [25]. The �rst two approaches are
only able to segment objects being manipulated, during which objects could be heavily oc-
cluded by the hand. In the second approach, �xed objects like a sink tap or a coffee machine,
which can be quite crucial to a task, are ignored. In the third approach, `object-like' regions
can focus on salient rather than used objects. Very few systems exploit the high quality
and predictive nature of eye gaze �xation. Its anticipatory nature allows estimating which
object will be used next [20, 21]. Gaze has been successfully used in to assist action recog-
nition [11, 24] or supervised object recognition [8, 34].
Contributions - Our approach

I. Discovers Task Relevant Objects from Multiple Users- using position and appear-
ance, along with attention (particularly gaze �xations).

II. Finds Common Modes of Interaction- as the object is used multiple times by the
same or multiple operators, the system automatically harvests various ways of usage,
and identi�es the most frequent ones.

III. Provides Video Help Guides- we showcase automatically extracted video guides; a
suitable video insert is triggered when a gazed-at object is recognised, to illustrate how
the object was used before.

Up to our knowledge,all the three tasks above have not been achieved before in a fully
unsupervised manner. The approach is tested on 6 different tasks involving 20 task relevant
objects and 3-5 operators.

3 The Method

Using a wearable camera and gaze tracker [19], egocentric video is collected of users per-
forming tasks, along with their gaze in pixel coordinates. There are two principal eye be-
haviours: fast motion transitions (aka saccades) and eye �xations. Importantly, studies of
eye �xations during everyday tasks show substantial similarities in the locations and number
of �xations by different operators, that gaze rarely visits irrelevant objects and that �xations
precede actions [12, 14, 20]. To �lter saccades, we follow the velocity-based approach [31],
where the average angular velocityvt over a sliding temporal window is calculated

vt =
1
N å

i
q(gi ;gi� 1) (1)

The functionq calculates the angular velocity between two consecutive gaze raysgi and
gi� 1, and N is the number of samples within the temporal window. As in [31], When
vt � 100� =sec, the gaze sample is classi�ed as a saccade is thus discarded.

3.1 Discovering Task Relevant Objects (TRO)

Given a sequence of imagesf I1; ::; ITg collected from multiple operators around a common
environment, we aim to extractK TROs, where each objectTROk is represented by the
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images from the sequence that feature the object of interest . As we are targeting instances
rather than categories, Fig.2 suggests combining position and appearance information.
Position: The ImageIt is positioned relative to the scene using sparse Simultaneous Local-
isation and Mapping (SLAM) [18]. Given the 6D pose of the scene camera, a 3D ray links
either the gaze point or the centre of the image1 to a point in the scene. A dense depth map
is estimated, using a triangular tessellation on the tracked interest points that are visible to
the scene camera (similar to [37]). A 3D point in spaceft is thus calculated from the triangle
4 Y0Y1Y2 of tracked interest points that includes the intersection point.

ft = Y0 + u(Y1 � Y0) + v(Y2 � Y0) (2)

whereu andv are projections of
��!
Y0 ft onto

��!
Y0Y1 and

��!
Y0Y2, respectively.

Appearance: To represent appearance, images are cropped around the gaze point or the
centre of the image to a window of sizew. The Histogram of Oriented Gradients (HOG) [3],
calculated on patches of sizep, is chosen as it achieves reasonable results for both highly-
textured and minimal-texture objects - the latter being frequent in the dataset used. Bag
of Words (BoW) is then used to represent each image. When combining position and ap-
pearance, the normalised af�nity matrices are summed with equal weighting. We also com-
pare to results that accumulate features over a sliding windoww centred around each image
(It� w� 1

2
; ::; It ; ::; It+ w� 1

2
).

For discovery, we compare k-means clustering to spectral clustering from Nget al. [27].
Unsupervised discovery, like other grouping problems, suffers from the dilemma of model
selection (i.e. the optimal number of groups). Most previous approaches assume the number
of groupings is known apriori [16, 38] to avoid the complexity. We propose estimating the
optimal number of clusterŝk using the standard Davies-Bouldin (DB) index [7]. For a cluster
TROi with data pointsf x j ; j = 1::nig assigned to this cluster, andmi is the mean of these data
points, the intra-cluster distanceSi can be measured as (Euclidean distance used):

Si =

vu
u
t 1

ni

ni

å
j= 1

jjXj � mi jj2 (3)

The inter-cluster distance between two clustersTROi andTROj is measured asMi j = jjmi � mj jj2.

The cluster similarity measureRi j = Si+ Sj
Mi j

is used to calculate the DB index,

VDB(k ) =
1
k

k

å
i= 1

max
j6= i

Ri j (4)

The optimal number of clusters is calculated to bek̂ = argmaxk VDB(k ).

3.2 Finding Modes of Interaction (MOI)
For discovered TROs, we then aim to �nd common MOIs for each discovered object by
clusteringvideo snippets, each representing one usage of a TRO. Given consecutive images
(It ; It+ 1; It+ r ) clustered into the same TRO2, a video snippetuk

i for TROk is de�ned as

uk
i = f Y(I j ;D( j);w); I j 2 TROk; j = t::t + r ; r � xg (5)

1the gaze point is used in experiments where attention is considered, otherwise the centre of the image is used
2the sequence may also include images that have not been clustered due to the lack of gaze information
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whereY crops a window of sizew from imageI j aroundD( j), andD( j) is the interpolated
gaze at framej as gaze information is missing in some frames. The collection of all video
snippetsUk = f uk

i g shows different ways in whichTROk was used.
Position and appearance information of all frames inui (superscriptk removed for sim-

plicity) are the same features used for discovering objects. These are augmented with motion
information collected using the Histogram of Optical Flow (HOF) descriptors around 3D
Harris points [22].

In addition to the BoW representation, we also use atemporal pyramidto encode the
descriptors. At each levell = f 1::Lg, the snippet is split intol equally-sized temporal seg-
ments, and the descriptor is calculated for each segment. The temporal pyramid could po-
tentially separate MOIs that differ in their temporal ordering, such as opening and closing.
A one-dimensional representation of the temporal pyramid formulates the descriptord(ui).
Clustering then follows (as in3.1) to �nd the MOIs.

Each cluster is represented by the video snippet ˆu j closest to the centre of the clustermj
(i.e. mean snippet), as well as the percentage of snippets within that clusterp(MOI j ).

û j = argmin
ul 2MOI j

jjd(ul ) � mj jj ; mj =
1

jMOI j j
å

ul 2MOI j

d(ul ); p(MOI j ) =
jMOI j j

jUkj
(6)

A thresholdl can be used to select common MOIs such thatp(MOI j ) � l .

3.3 Providing Video Help Guides
We present a possible application for unsupervised discovery of TROs and their MOIs. In
the assistive mode, when a discovered TRO is recognised, ahelp snippetis displayed to
show how this object was previously used. Notice that the assistive mode does not require
tracking of the camera relative to an environment, and objects are recognised within a 2D
patch around the gaze point. From the possibly many MOIs, we choose thehelp snippet ht
such as,

ht = argmin
u j

jjA1st(u j ) � A1st(Y (It ; ft ;w)) jj (7)

whereA1st is the appearance of the �rst frame in the snippet, andY is the cropped image as
in Eq.5. If the object changes state, the initial appearance is a good indicator of which video
snippet to show.

4 Experiments and Results
Setup & Dataset The wearable gaze tracker hardware (ASL Mobile Eye XG [19]) consists
of two cameras, one looking at the scene and another looking at the eye. After calibration,
the scene images are synchronised with, if available, 2D gaze points. Six locations were
chosen: kitchen (K), workspace (W), laser printer (P), corridor with a locked door (D),
cardiac gym (G) and weight-lifting machine (M) (Fig.3). For the �rst four locations (K, W,
P, D), sequences from �ve different operators were recorded, and from three operators for the
last two locations (G, M)3. Following the gaze tracker calibration, the operator moved freely
between the locations performing verbally-communicated tasks (Tab.1). Two sequences
were recorded for each operator.

3Dataset available at:http://www.cs.bris.ac.uk/~damen/BEOID

http://www.cs.bris.ac.uk/~damen/BEOID
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Number of sequences Sequence length Tracked (%) Gaze Fixations (%)
m s m s m s

K 10 1905 386 69.4 9.1 58.9 11.1
Prepare coffee using the machine, place the cup on the mat and add sugar
[tap, coffee machine, heat mat, cutlery drainer], (cup, sugar jar)

W 10 1221 194 78.3 12.4 61.9 18.1
Plug the screwdriver for charging and place the tape in the red box [Socket, Box], (screwdriver, charger, tape)

P 10 596 77 75.8 13.3 70.5 14.1
Check the printer is loaded with paper manually and using the keypad [drawer, keypad]

D 10 303 83 71.8 15.8 56.2 14.7
Go through the locked door [door lock, door handle]

G 6 5183 482 76.4 9.0 66.7 11.0
Use the treadmill and the bicycle next to it [treadmill panel, bicycle panel]

M 6 2059 624 24.5 16.2 14.6 15.2
Adjust the seat, chest pad and weight then use the machine [seat adjuster, pad adjuster, weight adjuster]

Table 1: For the six locations, the number of sequences, average number of frames, percent-
age of tracked frames, percentage of gaze �xations, as well as the verbally communicated
tasks, �xed “[]” and movable “()” ground-truth TROs.

The operators were then asked to watch the videos, and write down a narration of what
they have performed. Narrations were stemmed manually to unify nouns and verbs which
are semantically identical (e.g. adapter vs. charger, pick vs. retrieve). Nouns narrated by
more than 50% of the operators represent the twenty ground-truth TROs. Narrated verb-noun
combinations are labelled as MOIs. Objects varied between having a single MOI (e.g. door
handle: open) and up to three different usage methods (e.g. sugar jar: pick, put, get sugar).
For each location, a map is built using Parallel Tracking and Mapping (PTAM) [18]. A 3D
bounding box around each object is manually labelled for evaluation. For moveable objects,
their different locations are ground-truthed.
Fixed Parameters The temporal sliding window for discarding saccadesN (Eq.1) was set
to 9 frames. On average, 3D �xations were found at 66% of the sequences' frames (80%
of localised frames) (Tab.1). The appearance and motion descriptors are calculated in a
window of sizew = 200� 200, divided into 10� 10 non-overlapping patches for calculating
HOG descriptors. This corresponds to 19:3� visual angles in the scene camera. The number
of words in BoW representation is set to 200. In calculating the BD index,k = [ 2::2Nogt]
(Eq.4) whereNogt is the number of ground-truth objects.
Results for discovering TROs To calculate precision and recall, the smallest bounding
box encompassing 75% of the points in each cluster is computed, to avoid outliers. This is
compared to the ground-truth bounding boxes, and the PASCAL overlap criteria (in 3D) of

w clustering
Davies-Bouldin (DB) index Known Number of Objects (Known K)

Without Attention With Attention Without Attention With Attention
app pos both app pos both app pos both app pos both

1
k-means Recall 35.0 40.0 40.0 55.0 65.0 65.0 50.5 55.0 60.0 55.0 80.0 80.0

Precision 50.0 40.0 44.4 40.7 59.1 61.9 52.6 61.1 66.7 61.1 84.2 84.2

Spectral Recall 50.0 65.0 60.0 65.0 85.0 90.0 45.0 60.0 50.0 60.0 80.0 90.0
Precision 41.7 54.2 52.2 41.9 68.0 75.0 47.4 66.7 58.8 60.0 80.8 90.0

25
k-means Recall 60.0 40.0 45.0 60.0 65.0 70.0 50.0 60.0 55.0 60.0 85.0 85.0

Precision 44.4 42.1 52.9 42.9 59.1 63.6 52.6 70.6 64.7 60.0 89.5 89.5

Spectral Recall 70.0 75.0 60.0 70.0 80.0 95.0 50.0 60.0 55.0 70.0 90.0 90.0
Precision 45.2 51.7 50.0 48.3 59.3 73.0 55.6 66.7 57.9 73.7 90.0 94.7

Table 2: Recall and precision results for discovering TROs using different features, clustering
methods, with/without attention and sliding window.
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Figure 3: Discovered TROs (appearance, position, attention, spectral clustering,w = 25 and
DB index (i.e. number of objects is unknown)). An overview of the locations is shown at the
top. Blue dots represent true-positive (19 objs), red dots represent false positive (7 objs) and
green dots represent false negative (1 obj).

20% indicates a true-positive. This is because the viewed positions don't typically cover the
full extent of the object. Table2 shows the complete set of results for discovering TROs.
Two clustering methods are compared - spectral clustering and k-means. Appearance and
position features are used individually or combined, either for a single frame (w = 1) or a
sliding window (w = 25). The importance of gaze �xations as an attention mechanism is
compared - results `without attention' consider the centre of the image instead. Estimating
the number of clusters using the Davies-Bouldin (DB) index is compared to knowing the
number of clusters apriori (ref.Known K).

Table 2 shows that the best results are obtained using spectral clustering, combining
appearance and position, with attention and over a sliding window. Using Davies-Bouldin
(DB) index, 95% of the TROs were retrieved with 73% precision. These discovered TROs
are shown in Fig.3. If the number of clusters was known apriori 90% of TROs would be
discovered with 94% precision. This is because the optimal number of clusters using DB
index was higher than ground-truthK, resulting in one more correct object and several false
positive clusters.

Fig. 4 highlights several conclusions from the results: (a) shows that for [DB, attention,
w= 1] position achieves better than appearance when used solely. This is because most of the
objects in our dataset (15/20) are �xed objects. As expected, adding appearance information
increases the precision as this clusters instances of moveable objects into a single cluster.
Fig. 4 (b) shows that DB index achieves the same recall as Known K when using spectral
clustering [app+pos, attention,w = 1]. Precision increases when K is known - i.e. smaller
discarded clusters actually do not represent TROs. Fig.4 (c) shows the importance of within-
image attention [app+pos, Known K,w = 1]. A signi�cant drop in recall is observed when
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Figure 4: (a) appearance (app) vs position (pos) and their combination (app+pos) using
spectral vs. k-means clustering using DB index.(b) Using app+pos, DB index vs. known
number of clusters.(c) For app+pos and known K, patches around centre of image vs. gaze
�xations. (d) Single-frame vs. sliding window representations.

the information is gathered around the image centre rather than gaze �xations. Fig.4 (d)
shows that a sliding window gives a slight improvement in performance.
Results for discovering MOIs For each discovered object, the video snippets longer than
x = 1s (Eq. 5) are used to discover MOIs. On average, 16.6 video snippets are extracted
for each TRO (s = 7.4). We vary the thresholdl to acceptp(MOI j ) (Eq. 6) to produce
recall-precision curves. A cluster is true-positive if its representative snippet matches one
ground-truth MOI; a duplicate match for the same ground-truth MOI is a false-positive. We
compare using position, appearance and motion features with a temporal pyramid (Fig.6).
We then compare the features at their best temporal pyramid level, as well as their combina-
tion (Fig.7). Using the combination of features andl = 0:2, the approach is able to discover
meaningful MOIs. Figure8 shows an example of the method successfully discovering two
MOIs for the `socket'. Similarly, Fig.5 shows further discovered MOIs for the sugar jar and
the door handle.

Figure 5: For TRO `jar', 3 MOIs are discov-
ered (`get sugar', 'put', 'pick'). For the han-
dle, one MOI is discovered. Frames from the
representative snippets are shown.
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Figure 6: For position (left), temporal pyra-
mid (L=5) performed best, while motion
(right) performed best on L=1.
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Figure 7: Motion features achieved the high-
est AUC (shown in brackets), with a slight
improvement when features are combined.
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Figure 8: For the `socket', the two common MOIs (`switching', `plugging') are found (left
& right). The representativevideo snippetis shown (top) with the other snippets in the same
cluster (bottom) - only one snippet is incorrectly clustered (shown in red).

Discovering TROs could be attempted online, clustering and re�ning features during task
performance as data becomes available. In [6], we propose an online system, using features
suitable for real-time performance, to discover TROs and present results on the same dataset.
Video Help Guides To assess the ability of the approach to provide video guides, the
method is run using leave-one-out. For every operator, TROs are discovered and common
MOIs are found from sequences of other operators. In the assistive mode, when a discovered
TRO is detected, an insert is shown indicating a suggestive way of how the object can be
used. In this mode, we use the real-time texture-minimal scalable detector code from [4]
due to its light-weight computational load that makes it amendable to wearable systems [1].
A help snippetis displayed each time a new object is recognised. We showcase video help
guides using inserts on a pre-recorded video. These could in principle be shown on a head-
mounted display, but is not considered in this study. Figure9 shows frames from the help
videos and a full sequence is available4. Recall that these inserts areextracted, selected and
displayedfully automatically.

Figure 9: In the assistive mode, when a TRO is detected, video snippet is inserted showing
the most relevant common MOI based on the initial appearance.

5 Conclusion and Future Work
In this work, we investigate discovering task relevant objects and their common modes of
interaction from multi-user egocentric video,fully automatically. We compare appearance,
position and motion features, along with gaze �xations to indicate attention, for the discov-
ery. The method is able to produce high levels of precision and recall for task relevant objects
as well as meaningful modes of interaction. Video guides on how objects have been used
can also be automatically provided. We next aim to assess the usefulness of video guides for
human operators, and compare gaze to other relevance cues.

4http://www.cs.bris.ac.uk/~damen/You-Do-I-Learn
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