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Abstract

We present a fully unsupervised approach for the discovery of i) task relevant objects
and ii) how these objects have been used. Given egocentric video from multiple opera-
tors, the approach can discover objects with which the users interact, both static objects
such as a coffee machine as well as movable ones such as a cup. Importantly, the com-
mon modes of interaction for discovered objects are also found. We investigate using
appearance, position, motion and attention, and present results using each and a combi-
nation of relevant features. Results show that the method is capable of discovering 95%
of task relevant objects on a variety of daily tasks such as initialising a printer, preparing
a coffee and setting up a gym machine. In addition, the approach enables the automatic
generation of guidance video on how these objects have been used before.

1 Introduction

Humans learn how to deal with their surroundings through several means, one of whic
observing others. An intelligent agent that aims to learn objects in an environment, and n
importantly how these objects have been used, is of importance in robotics and assi:
systems. This is intrinsically distinct from learning a speci ¢ task or an activity, as the sar
object can be used in many tasks, while the ways in which one object can be interacted
are usually limited to a nite set of possible interactions.

This work attempts, téully unsupervised, discover objects and how they have been use
from observing several operators. As opposed to discovering all objects in the environm
we focus on discovering task relevant objectsTask Relevant Object (TRO)is an object,
or part of an object, with which a person interacts during task performance. For exampl
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Figure 1. Given egocentric videos from multiple users, three strands of information (posi

tion, appearance and motion) are used to discover task relevant dojgctsisupervised.
Harvested video snippets show how a discovered object is used for an assistive mode.
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person using a printer may interact with the paper drawer and/or the keypad while operatir
it. A system that aims to discover TROs would attempt to discover these objects (drawer ar
keypad) as opposed to the full machine or all its parts (Bigimportantly, we also introduce
the termModes of Interaction (MOI) to refer to the different ways in which TROs are used.
Say, a cup can be lifted, washed, or poured into. All these are different MOIs associated to tl
cup. When harvesting interactions with the same object from multiple operators, commo
MOlIs can be discovered.

In attempting the discovery of TROs and their MOIs, here we particularly focus on an
egocentric view of the world. This rst-person view of the world offers a unique perspective
on object-level interactions. With the introduction of wearable systems, egocentric video
from multiple individuals around a common environment will become easily and widely
available. But crucially we note that most available systems to analyse object-interactior
from rst-person view p, 11, 23, 26, 28, 29, 34] expect the objects involved to be known in
advance. The better way is to extract relevant information automatically. Recently, a shi
towards automatic discovery of objects for video summar2ég ¢r action recognition J]
has been witnessed, to which this work contributes. In this work, egocentric videos of mul
tiple operators performing tasks around a common environment are recorded, along with tl
operators' gaze. We provide a fully unsupervised method to discover TROs, and identif
common MOlIs for each object. Additionally and importantly, we are able to harvest suit-
able video snippets representative of each MOI. These can be used, for example, to provi
guidance to other users exploring the environment. Fully closing the cycle of identifying
what objects are relevant and how these can be used has not been attempted before, to
knowledge, in an unsupervised manner.

2 Unsupervised Object Discovery - a Review
Unsupervised object discovery refers to grouping visual information into meaningful cluster

that correspond to an entity worth discovering. We attempt to differentiate between th
various ways in which entities can be discovered from egocentric video; appearance, positi
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and motion. Figure envisages what can be discovered if each, or a combination, of the
information is used in the grouping. Previous works on unsupervised object discovery
reviewed here based on the information they use.

Appearance: Appearance, of object and context, are often

used to discovecategories- multiple instances are grouped

based on visual similarity (ref. recent surve3g]). Ap-

plied mostly to datasets of images, the aim is to group imag

(e.g. [L€]) or segments of images (e.(]) into object cate-

gories such as cars or giraffes. [bg], for example, Harris-

af ne interest points with SIFT descriptors are used to con-

struct a visual similarity network. Edges between features ar

constrained by the geometric consistency of matching pairs

of images, and weights are calculated to minimise the defor-

mation cost in image matching. The network is used to nd

image groupings based on nodes' structural similarity and a

PageRank algorithm. Similar approaches were applied to in- .

stance discoverylf] - colour, texture and shape-based fe&9ure 2: Using appear-
tures are used to construct a network of nely-segmented A8ICE; position, motion and
gions. While a very interesting approach with promising réombinations  for object
sults, [L5] assumes that objects of daily living are moveable. fiscovery

computer screen, for example, needs to be moved to a different

background to enable its discovery. This assumption is also made by other warks]|
Many objects of daily living tasks such as a coffee machine or an electric socket rem
xed to their surroundings. Moreover, all these approachiés 16, 38] assume the dataset
contains a single instance of an object of interest per image. When using video as inp
signi cant number of frames might not contain TROs as the user roams around an envir
ment.

Position: The position, relative to an environment, can be grouped into hot-spotst A
spotis a position at which object interaction takes place. It can refer to a xed object in tl
scene such as a kitchen sink, or a temporary position of a moveable object. Position has
used in [L3] to discover objects, by aligning two point clouds and identifying changes th
correspond to objects that have been placed or removed.

Motion: Motion in egocentric video is a result of the wearer's self-motion or that of objec
in an environment. Motion features can be grouped into actions, such as putting, dri
ing or stirring. The bag of quantised features approach for sparse spatio-temporal inte
points R2] or dense features3p] has produced state-of-the-art results in action recogn
tion. In egocentric video, motion descriptors have also been used to recognise actions, e
full-body action (such as in sport&T]) or object interactionsd, 23, 25, 35, 36].
Combinations: Using multiple cues has been recently attempted to improve recogniti
results. When combiningppearance with positigrone can separate two instances of a mug
when viewed in different locations. In Colletal.[2], RGB-D images collected from a robot
in a common environment were rst separated into discrete locations (rooms, in their ca:
then appearance and depth data are clustered to extract instances. The approach assun
all objects are placed on a planar surface (e.g. table-top) and employs a prior on the obj
shape and size. Combinigpearance with motiohas also been attempte@ 0. In [9],

an action is identi ed by the change in appearance of the object before and after the actic
performed. In 23], objects of “importance' are segmented from egocentric video sequenc
using appearance and motion features. The approach learns “objects of importance’ fre
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manually labelled training set (collected via crowd sourcing).

Attention: Attention is an important aspect to support relevance in tasks. Common ap
proaches in egocentric vision include i) segmenting the area surrounding the user'9,hand |
10, 23], ii) extracting foreground regions through frame stabilisation or scene planarity as
sumptions 9, 36] or iii) detecting “object-like' regions45]. The rst two approaches are
only able to segment objects being manipulated, during which objects could be heavily ot
cluded by the hand. In the second approach, xed objects like a sink tap or a coffee machin
which can be quite crucial to a task, are ignored. In the third approach, “object-like' region
can focus on salient rather than used objects. Very few systems exploit the high quali
and predictive nature of eye gaze xation. Its anticipatory nature allows estimating whick
object will be used next0, 21]. Gaze has been successfully used in to assist action recog
nition [11, 24] or supervised object recognitioB,[34].

Contributions - Our approach

I. Discovers Task Relevant Objects from Multiple Users using position and appear-
ance, along with attention (particularly gaze xations).

II. Finds Common Modes of Interaction- as the object is used multiple times by the
same or multiple operators, the system automatically harvests various ways of usag
and identi es the most frequent ones.

lll. Provides Video Help Guides- we showcase automatically extracted video guides; a
suitable video insert is triggered when a gazed-at object is recognised, to illustrate ho
the object was used before.

Up to our knowledgeall the three tasks above have not been achieved before in a fully
unsupervised mannefhe approach is tested on 6 different tasks involving 20 task relevant
objects and 3-5 operators.

3 The Method

Using a wearable camera and gaze tracké}, [egocentric video is collected of users per-
forming tasks, along with their gaze in pixel coordinates. There are two principal eye be
haviours: fast motion transitions (aka saccades) and eye xations. Importantly, studies ¢
eye xations during everyday tasks show substantial similarities in the locations and numbe
of xations by different operators, that gaze rarely visits irrelevant objects and that xations
precede actionslp, 14, 20]. To lter saccades, we follow the velocity-based approaghi,[
where the average angular velocityover a sliding temporal window is calculated

w= S &a(eie D @

The functiong calculates the angular velocity between two consecutive gazegrarsd
g 1, andN is the number of samples within the temporal window. As 3i][ When
Vi 100 =seg the gaze sample is classi ed as a saccade is thus discarded.

3.1 Discovering Task Relevant Objects (TRO)

Given a sequence of imaggk;;::;ITg collected from multiple operators around a common
environment, we aim to extra¢¢ TROs, where each objedtRQ, is represented by the
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images from the sequence that feature the object of interest . As we are targeting insta
rather than categories, Figsuggests combining position and appearance information.
Position: The Imagd; is positioned relative to the scene using sparse Simultaneous Loc
isation and Mapping (SLAM)18]. Given the 6D pose of the scene camera, a 3D ray link
either the gaze point or the centre of the imatgea point in the scene. A dense depth mag
is estimated, using a triangular tessellation on the tracked interest points that are visibl
the scene camera (similar t87). A 3D point in spacef; is thus calculated from the triangle
4 YpY1Y- of tracked interest points that includes the intersection point.

ft= Yo+ u(Ye Yo)+ v(Y2 Yo) (2

whereu andv are projections E)‘f’o fi onto!YoYl andIYoYz, respectively.

Appearance: To represent appearance, images are cropped around the gaze point ol
centre of the image to a window of sime The Histogram of Oriented Gradients (HOG),[
calculated on patches of sipgis chosen as it achieves reasonable results for both highl
textured and minimal-texture objects - the latter being frequent in the dataset used.
of Words (BoW) is then used to represent each image. When combining position and
pearance, the normalised af nity matrices are summed with equal weighting. We also cc
pare to results that accumulate features over a sliding windeentred around each image
(I ﬂfl;::;lt;::;IHWTl).

For discovery, we compare k-means clustering to spectral clustering froet d27).
Unsupervised discovery, like other grouping problems, suffers from the dilemma of mo
selection (i.e. the optimal number of groups). Most previous approaches assume the nul
of groupings is known apriorill6, 38] to avoid the complexity. We propose estimating the
optimal number of clusteis using the standard Davies-Bouldin (DB) ind&% [For a cluster
TRQ with data pointg x;j; j = 1::njg assigned to this cluster, anglis the mean of these data
points, the intra-cluster distan&can be measured as (Euclidean distance used):

Vv
U
s=t 2&ix mi, ©

Ijl

The inter-cluster distance between two clusteRQ andT RGO is measured adij; = jjm  mjj,.

The cluster similarity measui®; = s'\;ijs,- is used to calculate the DB index,

1k
Vos(k) = - & maxR; ©)
i=1 16
The optimal number of clusters is calculated tdkbe argmax Vpg(k).

3.2 Finding Modes of Interaction (MOI)

For discovered TROs, we then aim to nd common MOlIs for each discovered object
clusteringvideo snippets each representing one usage of a TRO. Given consecutive imag
(It; I+ 1; I+ ¢ ) clustered into the same TR video snippem}‘ for TROKk is de ned as

u=fY(;5D()w); 1j2TRQ; j=tit+r; 1 xg (5)

1the gaze point is used in experiments where attention is considered, otherwise the centre of the image is
the sequence may also include images that have not been clustered due to the lack of gaze information
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whereY crops a window of sizev from imagel; aroundD(j), andDX(j) is the interpolated
gaze at framg as gaze information is missing in some frames. The collection of all video
snippetdJy = f ukg shows different ways in which RQ, was used.

Position and appearance information of all frames;ifsuperscripk removed for sim-
plicity) are the same features used for discovering objects. These are augmented with moti
information collected using the Histogram of Optical Flow (HOF) descriptors around 3D
Harris points p2].

In addition to the BoW representation, we also uderaporal pyramido encode the
descriptors. At each levél= f 1::Lg, the snippet is split intd equally-sized temporal seg-
ments, and the descriptor is calculated for each segment. The temporal pyramid could p
tentially separate MOls that differ in their temporal ordering, such as opening and closing
A one-dimensional representation of the temporal pyramid formulates the desdiiptor
Clustering then follows (as i8.1) to nd the MOls.

Each cluster is represented by the video snippeioSest to the centre of the clustar
(i.e. mean snippet), as well as the percentage of snippets within that qh(isten ;).

iMOlj
= argminjd(u) mjj; m= & du); por)= S

— 6
U2MOl; JMOIJJ u2MOl; ]UkJ ( )

Athresholdl can be used to select common MOlIs such i{#Ol;) | .

3.3 Providing Video Help Guides

We present a possible application for unsupervised discovery of TROs and their MOls. |
the assistive mode, when a discovered TRO is recognisée]pasnippets displayed to
show how this object was previously used. Notice that the assistive mode does not requi
tracking of the camera relative to an environment, and objects are recognised within a 2
patch around the gaze point. From the possibly many MOls, we choo$elfinenippet h
such as,

h = arg nJinjjAlSt(uj) ALY (I fr;w)) i (7
j

whereAls! is the appearance of the rst frame in the snippet, ¥nid the cropped image as
in Eq.5. If the object changes state, the initial appearance is a good indicator of which vide
shippet to show.

4 Experiments and Results

Setup & Dataset The wearable gaze tracker hardware (ASL Mobile Eye X&)[consists

of two cameras, one looking at the scene and another looking at the eye. After calibratio
the scene images are synchronised with, if available, 2D gaze points. Six locations we
chosen: kitchen (K), workspace (W), laser printer (P), corridor with a locked door (D),
cardiac gym (G) and weight-lifting machine (M) (Fig).. For the rst four locations (K, W,

P, D), sequences from ve different operators were recorded, and from three operators for tl
last two locations (G, M). Following the gaze tracker calibration, the operator moved freely
between the locations performing verbally-communicated tasks [JabTwo sequences
were recorded for each operator.

SDataset available ahttp://www.cs.bris.ac.uk/~damen/BEOID
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Number of sequences Sequence length Tracked (%) Gaze Fixations (%)
m s m s m s
K 10 1905 386 69.4 9.1 58.9 11.1
Prepare coffee using the machine, place the cup on the mat and add sugar

[tap, coffee machine, heat mat, cutlery drainer], (cup, sugar jar)

W 10 [ 1221 | 1904 | 783 [ 124 [ 619 [ 181
Plug the screwdriver for charging and place the tape in the red box [Socket, Box], (screwdriver, charger, tape)
P 10 [ 596 | 77 ] 758 | 183 | 705 | 141
Check the printer is loaded with paper manually and using the keypad [drawer, keypad]
D 10 [ 303 | 8 | 718 [ 158 [ 562 [ 147
Go through the locked door [door lock, door handle]
G 6 | 5183 | 482 | 764 | 90 | 667 | 110
Use the treadmill and the bicycle next to it [treadmill panel, bicycle panel]
M 6 [ 2059 | 624 | 245 [ 162 | 146 [ 152

Adjust the seat, chest pad and weight then use the machine [seat adjuster, pad adjuster, weight adjuster]

Table 1: For the six locations, the number of sequences, average number of frames, per
age of tracked frames, percentage of gaze xations, as well as the verbally communic:
tasks, xed “[]” and movable “()” ground-truth TROs.

The operators were then asked to watch the videos, and write down a narration of v
they have performed. Narrations were stemmed manually to unify nouns and verbs wi
are semantically identical (e.g. adapter vs. charger, pick vs. retrieve). Nouns narratec
more than 50% of the operators represent the twenty ground-truth TROs. Narrated verb-r
combinations are labelled as MOIs. Objects varied between having a single MOI (e.g. ©
handle: open) and up to three different usage methods (e.g. sugar jar: pick, put, get su
For each location, a map is built using Parallel Tracking and Mapping (PTAR]) A 3D
bounding box around each object is manually labelled for evaluation. For moveable obje
their different locations are ground-truthed.

Fixed Parameters The temporal sliding window for discarding saccabtlieieq. 1) was set

to 9 frames. On average, 3D xations were found at 66% of the sequences' frames (8
of localised frames) (Takl). The appearance and motion descriptors are calculated in
window of sizew = 200 200, divided into 10 10 non-overlapping patches for calculating
HOG descriptors. This corresponds ta3d Yvisual angles in the scene camera. The numbe
of words in BoW representation is set to 200. In calculating the BD inklex[ 2::2N o]
(Eq.4) whereNoy is the number of ground-truth objects.

Results for discovering TROs To calculate precision and recall, the smallest boundin
box encompassing 75% of the points in each cluster is computed, to avoid outliers. Thi
compared to the ground-truth bounding boxes, and the PASCAL overlap criteria (in 3D)

Davies-Bouldin (DB) index Known Number of Objects (Known K)

w clustering Without Attention With Attention Without Attention With Attention
app pos both app pos both app pos both app pos both
K-means Reca_lll_ 35.0 | 40.0 | 40.0 | 55.0 | 65.0 | 65.0 505 [ 55.0 | 60.0 | 55.0 | 80.0 | 80.0
1 Precision 50.0 40.0 44.4 40.7 59.1 61.9 52.6 61.1 66.7 61.1 84.2 84.2
Spectral Reca.ll. 50.0 65.0 60.0 65.0 85.0 90.0 45.0 60.0 50.0 60.0 80.0 90.0
Precision 41.7 54.2 52.2 41.9 68.0 75.0 47.4 66.7 58.8 60.0 80.8 90.0
K-means Recalilll 60.0 | 40.0 | 45.0 | 60.0 | 65.0 | 70.0 50.0 | 60.0 | 55.0 | 60.0 | 85.0 | 85.0
25 Precision 4441421 | 529 | 429 | 59.1 | 63.6 526 | 706 | 647 | 60.0 | 895 | 89.5
Spectral Reca_lll_ 70.0 [ 75.0 | 60.0 | 70.0 | 80.0 | 95.0 500 [ 60.0 [ 55.0 | 70.0 | 90.0 [ 90.0
Precision 45.2 51.7 50.0 48.3 59.3 73.0 55.6 66.7 57.9 73.7 90.0 94.7

Table 2: Recall and precision results for discovering TROs using different features, clustel
methods, with/without attention and sliding window.
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Figure 3: Discovered TROs (appearance, position, attention, spectral clusterirgf and

DB index (i.e. number of objects is unknown)). An overview of the locations is shown at the
top. Blue dots represent true-positive (19 objs), red dots represent false positive (7 objs) a
green dots represent false negative (1 obj).

20% indicates a true-positive. This is because the viewed positions don't typically cover th
full extent of the object. Tabl@ shows the complete set of results for discovering TROs.
Two clustering methods are compared - spectral clustering and k-means. Appearance ¢
position features are used individually or combined, either for a single frarse X) or a
sliding window (v = 25). The importance of gaze xations as an attention mechanism is
compared - results “without attention' consider the centre of the image instead. Estimatir
the number of clusters using the Davies-Bouldin (DB) index is compared to knowing the
number of clusters apriori (reKnown K).

Table 2 shows that the best results are obtained using spectral clustering, combinin
appearance and position, with attention and over a sliding window. Using Davies-Bouldil
(DB) index, 95% of the TROs were retrieved with 73% precision. These discovered TRO
are shown in Fig3. If the number of clusters was known apriori 90% of TROs would be
discovered with 94% precision. This is because the optimal number of clusters using D
index was higher than ground-truith resulting in one more correct object and several false
positive clusters.

Fig. 4 highlights several conclusions from the results: (a) shows that for [DB, attention,
w= 1] position achieves better than appearance when used solely. This is because most of
objects in our dataset (15/20) are xed objects. As expected, adding appearance informati
increases the precision as this clusters instances of moveable objects into a single clus
Fig. 4 (b) shows that DB index achieves the same recall as Known K when using spectre
clustering [app+pos, attentiom;= 1]. Precision increases when K is known - i.e. smaller
discarded clusters actually do not represent TROs.4Hig). shows the importance of within-
image attention [app+pos, Known K= 1]. A signi cant drop in recall is observed when
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TR

Figure 4: (a) appearance (app) vs position (pos) and their combination (app+pos) us
spectral vs. k-means clustering using DB indéx) Using app+pos, DB index vs. known
number of clusters(c) For app+pos and known K, patches around centre of image vs. ga
xations. (d) Single-frame vs. sliding window representations.

the information is gathered around the image centre rather than gaze xations4 (€ip.
shows that a sliding window gives a slight improvement in performance.

Results for discovering MOIs For each discovered object, the video snippets longer the
x = 1s (Eq. 5) are used to discover MOls. On average, 16.6 video snhippets are extrac
for each TRO ¢ = 7.4). We vary the threshold to acceptp(MOl;) (Eq. 6) to produce
recall-precision curves. A cluster is true-positive if its representative snippet matches:
ground-truth MOI; a duplicate match for the same ground-truth MOI is a false-positive. \
compare using position, appearance and motion features with a temporal pyramig).(Fig
We then compare the features at their best temporal pyramid level, as well as their comk
tion (Fig. 7). Using the combination of features ahd 0:2, the approach is able to discover
meaningful MOls. Figureé3 shows an example of the method successfully discovering tw
MOIs for the “socket'. Similarly, Figs shows further discovered MOIs for the sugar jar anc
the door handle.

Figure 6: For position (left), temporal pyre
mid (L=5) performed best, while motiol

Figure 5. For TRO Jjar', 3 MOls are discov-

ered (‘get sugar’, 'put’, 'pick’). For the han- Figure 7: Motion features achieved the hig
dle, one MOl is discovered. Frames from the est AUC (shown in brackets), with a sligl
representative snippets are shown. improvement when features are combinec
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Figure 8: For the “socket', the two common MOIs (“switching', “plugging’) are found (left
& right). The representativeideo snippets shown (top) with the other snippets in the same
cluster (bottom) - only one snippet is incorrectly clustered (shown in red).

Discovering TROs could be attempted online, clustering and re ning features during tas
performance as data becomes availableS)nJe propose an online system, using features
suitable for real-time performance, to discover TROs and present results on the same data:
Video Help Guides To assess the ability of the approach to provide video guides, the
method is run using leave-one-out. For every operator, TROs are discovered and comm
MOlIs are found from sequences of other operators. In the assistive mode, when a discovel
TRO is detected, an insert is shown indicating a suggestive way of how the object can t
used. In this mode, we use the real-time texture-minimal scalable detector codedfrom [
due to its light-weight computational load that makes it amendable to wearable sy$jems [
A help snippets displayed each time a new object is recognised. We showcase video hel
guides using inserts on a pre-recorded video. These could in principle be shown on a hez
mounted display, but is not considered in this study. Figusiiows frames from the help
videos and a full sequence is availgblRecall that these inserts azgtracted, selected and
displayedfully automatically.

Figure 9: In the assistive mode, when a TRO is detected, video snippet is inserted showi
the most relevant common MOI based on the initial appearance.

5 Conclusion and Future Work

In this work, we investigate discovering task relevant objects and their common modes ¢
interaction from multi-user egocentric videolly automatically We compare appearance,
position and motion features, along with gaze xations to indicate attention, for the discov-
ery. The method is able to produce high levels of precision and recall for task relevant objec
as well as meaningful modes of interaction. Video guides on how objects have been us
can also be automatically provided. We next aim to assess the usefulness of video guides
human operators, and compare gaze to other relevance cues.

4http://www.cs.bris.ac.uk/~damen/You-Do-I-Learn
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