
Hyperspectral Face Recognition using 3D-DCT and Partial Least Squares

Muhammad Uzair
uzair@csse.uwa.edu.au

Arif Mahmood
arif.mahmood@uwa.edu.au

Ajmal Mian
ajmal.mian@uwa.edu.au

Computer Science and Software Engineering
The University of Western Australia
35 Stirling Highway, Crawley, WA, Australia.

Hyperspectral imaging offers new opportunities for inter-person facial
discrimination. However, due to the high dimensionality of hyperspec-
tral data, discriminative feature extraction for face recognition is more
challenging than 2D images. For dimensionality reduction and feature
extraction most of the previous approaches just sub sampled the hyper-
spectral data [5, 6, 9] or used simple PCA [3]. In contrast, we propose
the three dimensional Discrete Cosine Transform (3D-DCT) for feature
extraction (Fig. 1). Exploiting the fact that hyperspectral data is usu-
ally highly correlated in the spatial and spectral dimensions, a transform
such as DCT is expected to perform information compaction in a few co-
efficients by providing maximal decorrelation. DCT transform being an
approximation of the KL-Transformation optimally compacts the signal
information in a given number of transform coefficients. Moreover, com-
pared to other transforms, such as the Fourier transform, the transformed
coefficients are real and thus require less data to process.

The Discrete Cosine Transform (DCT) [1] expresses a discrete signal,
such as a 2D image or a hyperspectral cube, as a linear combination of mu-
tually uncorrelated cosine basis functions [4]. DCT generates a compact
energy spectrum of the signal where the low-frequency coefficients en-
code most of the signal information. A compact signal representation can
be obtained by selecting only the low-frequency coefficient as features.

The 2D-DCT of a 2D image h(x,y)N1×N2 , and the 3D-DCT of a hy-
perspectral cube H(x,y,λ )N1×N2×N3 are given by
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where u = {0,1, ...,N1− 1}, v = {0,1, ...,N2− 1}, w = {0,1, ...,N3− 1}
and Ωi(u) is defined as
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The low frequency coefficients near the origin of F(u,v,w) repre-
sent most of the energy of the hyperspectral cube (Fig. 1), therefore,
the high-frequency coefficients can be discarded. In order to construct
our proposed feature vector, we sample a frequency sub-cube Γ(u,v,w)
of dimensions (α×β × γ) by retaining only the low-frequency elements
around the origin of F(u,v,w) i.e., {(u,v,w)|u≤α,v≤ β ,w≤ γ} (Fig. 2).
The sub-cube Γ(u,v,w) is vectorized and normalized to unit magnitude to
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Figure 1: 3D-DCT based feature extraction. A hyperspectral cube (each
band is rendered as RGB) and the corresponding 3D-DCT energy spec-
trum. It can be seen that only few coefficients around the origin contain
most of the energy.

Figure 2: Sub-cubes of size 10×10×10 sampled around the origin of the
3D-DCT energy spectrum of four different subjects of the UWA Hyper-
spectral Database.

obtain the final feature vector f ∈Rd , where d = (αβγ), which is used
for classification. For the purpose of classifying the 3D-DCT features, we
propose Partial Least Square (PLS) regression.

We perform experiments on three standard hyperspectral face databases
including the PolyU Hyperspectral [3, 7], CMU Hyperspectral [2] and
UWA Hyperspectral databases. The results are compared with five ex-
isting hyperspectral face recognition algorithms. Table 1 shows that the
proposed algorithm out-performed five existing hyperspectral face recog-
nition algorithms on all three databases. We observe that PLS regression
performed better than SRC. It is because PLS basis projects the feature
vectors into a latent space in which feature vectors corresponding to the
same subject are closer than the feature vectors corresponding to different
subjects.

Table 1: Average recognition rates and standard deviations (%) for ten
fold experiments on three databases.

Algorithm PolyU Database CMU Database UWA Database

Hyperspectral

Spectral Signature [5] 24.63±3.87 38.18±1.89 40.52±1.08
Spectral Angle [8] 25.49±4.36 38.16±1.89 37.95±4.15
Spectral Eigenface [6] 70.30±3.61 84.54±3.78 91.51±3.07
2D PCA [3] 71.11±3.16 72.10±5.41 83.85±2.42
3D Gabor Wavelets [9] 90.19±2.09 91.67±2.86 91.50±3.07

Proposed

2D-DCT + SRC 75.86±2.92 97.44±1.24 97.00±1.29
2D-DCT + PLS 91.43±2.10 97.78±1.28 97.25±1.87
3D-DCT + SRC 87.02±1.72 98.10±0.69 98.00±1.84
3D-DCT + PLS 93.00±2.27 99.00±0.85 98.00±1.39
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