
HEWETT, JERMYN, HEATH, KAMALABADI: PHASE FIELD TOMOGRAPHY 1

A Phase Field Method for Tomographic
Reconstruction from Limited Data

Russell J. Hewett
rhewett@mit.edu

Imaging and Computing Group
Department of Mathematics
Massachusetts Institute of Technology
Cambridge, MA

Ian Jermyn
i.h.jermyn@durham.ac.uk

Department of Mathematical Sciences
Durham University
Durham, UK

Michael T. Heath
heath@illinois.edu

Department of Computer Science
University of Illinois at
Urbana-Champaign
Urbana, IL

Farzad Kamalabadi
farzadk@illinois.edu

Department of Electrical and Computer
Engineering
University of Illinois at
Urbana-Champaign
Urbana, IL

Abstract

Classical tomographic reconstruction methods fail for problems in which there is
extreme temporal and spatial sparsity in the measured data. Reconstruction of coronal
mass ejections (CMEs), a space weather phenomenon with potential negative effects on
the Earth, is one such problem. However, the topological complexity of CMEs renders
recent limited data reconstruction methods inapplicable. We propose an energy function,
based on a phase field level set framework, for the joint segmentation and tomographic
reconstruction of CMEs from measurements acquired by coronagraphs, a type of solar
telescope. Our phase field model deals easily with complex topologies, and is more
robust than classical methods when the data are very sparse. We use a fast variational
algorithm that combines the finite element method with a trust region variant of Newton’s
method to minimize the energy. We compare the results obtained with our model to
classical regularized tomography for synthetic CME-like images.

1 Motivation and Background

Our knowledge of the physical processes that drive the sun is far from complete. Phenom-
ena such as active regions, solar flares, coronal mass ejections (CMEs), and solar wind, all
of which contribute to geoeffective events, collectively referred to as space weather, are

c© 2012. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
This work was funded by NASA GSRP fellowship NNX08AT43H FLL and by the NSF grant 0620550 CMG.

http://dx.doi.org/10.5244/C.26.120


2 HEWETT, JERMYN, HEATH, KAMALABADI: PHASE FIELD TOMOGRAPHY

not well understood [1], yet are of critical importance due to modern society’s reliance on
technologies that can be disrupted by these events.

Understanding such activity requires knowledge of physical parameters of the solar corona
(or solar atmosphere), such as temperature and electron density [4? ], but such knowledge
is hard to come by, particularly for local, short-lived events such as CMEs. One promising
source of information is provided by satellite based solar telescopes called coronographs.
Images from these instruments are formed by line-of-sight integrals of the free electron den-
sity in the corona. In principle, these images can be used to reconstruct the density field.

Coronagraph measurements of the sun are available from at most three perspectives at
any given time, due to observatories along the Earth-Sun line and the dual STEREO space-
craft [5], resulting in extremely limited observations of space weather events. Classical 3D
tomographic reconstruction of the solar corona relies on a dense set of measured data from
all around the sun and exploits solar rotation or dynamic modeling [3] partially to resolve
difficulties due to the limited observation configuration.

For direct CME imaging, however, the short lifetime of CMEs, long acquisition times,
and inadequacies in current dynamical models render these methods unusable. In addition,
while data are available for some CMEs from up to three observation points, it is more com-
mon to have observations of any given event from only two view points. As such, any CME
tomography model must be robust to very small amounts of data. In practice, such recon-
struction is a nontrivial problem. Mumford-Shah type models [13] have previously been pro-
posed for CME reconstruction [7] and for similar problems in Fourier imaging [16], X-ray
tomography [14], and near-infrared spectroscopic imaging [8]. Frazin et al. [7] represent the
electron density by two distinct functions, corresponding to the CME and the background.
These functions are Tikhonov-regularized with two different regularization parameters, al-
lowing more variation in the CME region, while forcing the background to be smoother.
However, solutions necessarily have a discontinuity on the boundary, while in reality there is
only one continuous distribution of electron density. In addition, the use of distance function
level sets to represent the segmentation means that heuristics are required to handle complex
topologies, such as for solutions with multiple disjoint or embedded connected components,
or regions with holes in them [15], situations that often arise in CMEs.

In this paper, we present a method for reconstruction that uses an auxiliary segmentation
to constrain the density, but that resolves the above issues by using the phase field level set
framework to represent the segmentation. We thereby eliminate important topological limi-
tations present in previous work, and allow for smooth enforcement of two different regular-
ization regimes, while retaining robustness to sparse data. Moreover, we compute maximum
a priori (MAP) estimates using an efficient optimization algorithm that significantly reduces
computational complexity compared to classical gradient descent.

The joint segmentation-tomography model is discussed in Sec. 2, while in Sec. 3 we de-
scribe the optimization algorithm. In Sec. 4 we describe and discuss test results on synthetic
images and on a 2D slice of a 3D simulation of a CME, as used for testing in [7].

2 A Phase Field Model for Segmentation and Tomography
We seek to infer the electron density f : Ω→ R in a local section of the solar corona Ω and
a segmentation classifying a subset R ⊂ Ω as part of a CME, given a set of coronagraphs
Y and prior knowledge K, e.g. parameter values. We represent the segmentation by a phase
field function, φ : Ω→ R, and construct a probability distribution P( f ,φ |Y,K) representing
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our knowledge of f and φ , from which the MAP estimate, ( f̂ , φ̂) = argmax( f ,φ) P( f ,φ |Y,K),
can be determined. Using P(Y | f ,K) = P(Y | f ,φ ,K), applying Bayes’ theorem, and writing
everything in terms of energy functionals (negative log probabilities), yields the equivalent
minimization problem:

( f̂ , φ̂) = argmin
( f ,φ)

E(Y | f ,K)+E( f |φ ,K)+E(φ |K) . (1)

2.1 Tomographic Imaging Model
The data Y are a set of measurements

{
y j
}

j∈[1..m]
, with y j : Γ→ R, where Γ is the measure-

ment domain and y j = h j( f )+n j, where h j is a tomographic projection operator (and thus y j
is a projection or line-of-sight measurement) and n j ∼N (0,σ2). Consequently, the energy
due to measured data is

E(Y | f ,K) = ∑
j

1
2σ2

∫
Γ

(y j−h j( f ))2 . (2)

2.2 Segmentation Model
We use the phase field framework to construct the segmentation prior energy E(φ |K) of (1).
A phase field is a level set function, φ : Ω→R, representing the region R= {x ∈Ω|φ(x)> 0}.
As prior energy for the segmentation, we use the Ginzburg-Landau functional [15],

E(φ |K) =
∫

Ω

{
c1

1
2

∇φ ·∇φ + c2(
1
4

φ
4− 1

2
φ

2)+ c3(φ −
1
3

φ
3)

}
, (3)

where c1, c2, and c3 are free parameters. The last two terms are a double well potential where,
for |c3|< c2, local minima occur at φ =±1, with a local maximum at φ = c3

c2
. Coupled with

the smoothing effect of the first term, the potential terms ensure that, away from the region
boundary and for fixed R, φ takes the values 1 in R and−1 in Ω\R. Near the boundary, there
is a smooth transition from−1 to 1 across a diffuse interface zone of width roughly 4

√
c1/c2.

The effective energy controlling R is then a linear combination of the length (surface area)
of the boundary and the area (volume) of the interior of R [15] for 2D (3D) regions.

Because φ is not constrained a priori to take on a particular form (e.g. a distance func-
tion), ad hoc methods for adding connected components or holes in an existing domain are
unnecessary: region components can be produced and eliminated in a natural way [15].

2.3 Electron Density Model
We define the energy E( f |φ ,K), which couples the phase field to the density, by

E( f |φ ,K) =
∫

Ω

{
1
2
(λ+φ++λ−φ−)(∇ f ·∇ f )− c4∇φ ·∇ f

}
, (4)

where φ± = (1± φ)/2 act as pseudo-indicator functions for the CME and background re-
gions. The first term defines distinct Tikhonov regularization parameters, λ±, for the interior
and exterior of R. The second term favours large inward pointing ∇ f on the boundary, be-
cause CMEs generally have sharply higher densities than the background. Thus, like [7],
we model the background as smoother than the CME, and with a very different density, but
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unlike [7], the diffuse nature of the phase field interface allows the regularization parameter
to change smoothly, though rapidly, across the interface. We therefore only need one density
function.

3 Variational Energy Minimization
To compute the MAP estimate, we thus minimize the joint segmentation-tomography energy
functional

EJST( f ,φ) = ∑
j

1
2σ2

∫
Γ

(y j−h j( f ))2 +
∫

Ω

{
1
2
(λ+φ++λ−φ−)(∇ f ·∇ f )− c4∇φ ·∇ f

+ c1
1
2

∇φ ·∇φ + c2(
1
4

φ
4− 1

2
φ

2)+ c3(φ −
1
3

φ
3)

}
. (5)

In line with previous applications, we initially attempted to optimize EJST using a split-
step gradient descent method, alternately finding zeros of the components of ∇EJST, i.e. the
functional derivatives in each variable. Traditionally, the subproblems are solved by intro-
ducing a fictitious time dependence and solving the resulting PDE using an explicit finite
difference method. However, the small time step required for stability leads to slow con-
vergence and implicit methods that allow larger time steps are impractical due to increased
computational complexity from the nonlinearity in the phase field potential. Additionally,
the split-step method complicates the implementation: it is necessary to solve each subprob-
lem only partially, at least early in the descent, to avoid getting stuck in local minima, but
determining how far to go before switching subproblems is nontrivial.

To resolve these issues, we minimize EJST in both f and φ simultaneously using a
finite element discretization and a trust-region-based variation on Newton’s method, the
Levenberg-Marquardt method [9, 11]. In this approach, the length of the descent step is
dependent upon the minimization algorithm and the local shape of the objective function,
and is not explicitly constrained by the discretization.

Let u = ( f ,φ) ∈V and E = EJST : V →R. We seek the u∗ ∈V that minimizes E. Rather
than directly computing F(u) and DF(u), the functional gradient and Hessian operator of E,
and applying the standard Newton’s method for optimization [2, 6, 12] in the finite difference
framework, we apply Newton’s method in the weak sense. The weak form of the Euler-
Lagrange equations F(u) is found by determining the first directional derivative of E,

〈F(u),v〉= d
dτ

E(u+ τv)
∣∣∣∣
τ=0

, (6)

where 〈a,b〉 is the L2 inner product on Ω. The Hessian, given by the linearized bilinear form
of (6), is

〈DF(u)[w],v〉= d
dτ
〈F(u+ τw),v〉

∣∣∣∣
τ=0

. (7)

For a fixed u, the Newton step is then the w ∈V for which

〈DF(u)[w],v〉=−〈F(u),v〉 ∀ v ∈V . (8)

The next Newton iterate is then u+αw, where α ∈ (0,1] is a damping parameter.
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Figure 1: Test images. (a) ‘kidney’ and (b) ‘annulus’ images sampled from approximate
model distribution. (c) 2D slice of 3D CME simulation. (Image source: [7])

When (8) is discretized using the finite element method and the step is applied itera-
tively, a linear system Akwk = bk is obtained. At each step k of the iteration, Ak and bk are
recomputed based on the current discretized solution uk. Solving for wk at each iteration,
the discrete Newton iteration uk+1 = uk +αwk, is repeated until the norm of the gradient bk
is sufficiently small. However, due to the nonconvexity of EJST, Ak is frequently not positive
definite, particularly for early iterations, so uk is not guaranteed to be a descent step. We
apply the Levenberg-Marquardt method to guarantee positive definiteness. In this method,
the update is the solution to the linear system (Ak +µI)wk = bk where µ is a shift parameter
chosen to make the system positive definite. We compare the results with the above method
(‘LM’), to the method of steepest descent (‘SD’), obtained in a similar manner by solving
for the w for which 〈I[w],v〉 = −〈F(u),v〉∀v ∈ V , where I is the identity operator. For the
method of steepest descent, a line search is used to compute a safe, optimal step length.

4 Numerical Experiments

We use two synthetic images and one approximation of a CME image (Fig. 1) to demonstrate
the effectiveness of the phase field joint segmentation-tomography model. The ‘kidney’
shape in Fig. 1(a) and the ‘annulus’ in Fig. 1(b) were chosen because the kidney shape is
relatively simple, but has a concave section, and the annulus is again simple but has a hole in
the middle, which can cause issues with other segmentation procedures. These regions were
represented by phase fields, and the electron density f was then generated by sampling from
the Gaussian probability distribution associated with the energy E( f |φ ,K) with parameter
values c4 = 1, λ+ = 1, and λ− = 6. The CME sample image Fig. 1(c) was generously
provided to us by the authors of [7]. This image is a 2D slice from a 3D simulation of an
October 28, 1998 CME [10].

We approximate f and φ by piecewise linear basis functions on a mesh formed by tri-
angulating an equispaced Cartesian grid. Synthetic data were generated by applying a pro-
jection operator H, a matrix whose rows are the discretized projection operators h j, to the
sample images. Noise was then added to these synthetic measurements, with σ = 1. For data
generation, H was computed using a high-order quadrature rule, whereas for reconstruction
H was generated using a low-order quadrature rule to avoid “inverse crimes”. We employed
the parameter values that were used in generating the data for the two synthetic examples.
For the CME image, the parameter values were determined heuristically to be c1 = 1, c4 = 5,
λ+ = 50, and λ− = 300. The values of c2 and c3 are given below for each reconstruction.
For all three examples, the phase field was initialized to the neutral initialization φ = c3/c2,
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Figure 2: Segmentation-reconstructions: LM (left) and SD (right). Computed segmentations
in solid green; true segmentations in dashed yellow.

Experiment Size c1 c2 c3 Iter. Run Time EJST(u∗)

Kidney LM 32×32 1.0 110.0 17.0 146 55.1s -31636.2118
SD 5789 130.2s -23919.560

Table 1: Parameter values and run time statistics for the kidney image, Fig. 1(a), using the
LM and SD algorithms, for 32 equispaced observation angles and 32 projections per angle.
Corresponding reconstructions are shown in Fig. 2.

i.e. the maximum of the phase field potential, while the initial density was f = 0.

4.1 Synthetic Images

The first experiment compares the LM and SD algorithms. Fig. 2 shows segmentation-
reconstructions of the 32× 32 kidney image using LM (left) and SD (right). The data con-
sisted of 32 projections at each of 32 equispaced observation angles. The solid green line
is the computed segmentation, while the dashed yellow line is the true segmentation. Pa-
rameter values and run time statistics are given in Tbl. 1. The result from SD is very poor
compared with that from LM, and is typical of results we found with SD. The method often
is caught in local minima representing low quality solutions, and the execution time is long.
Due to this unreliability, we consider only the LM algorithm in the remainder of this paper.

The next experiment tests the method on increasingly sparse data. Fig. 3 shows results
obtained on the annulus image, Fig. 1(b), with 32, 4, and 2, equispaced observation angles.
The first column is the reconstruction; the second column is the phase field; the third column
shows the computed (in solid green) and true (in dashed yellow) segmentations superim-
posed on the reconstruction. Tbl. 2 shows parameter values and run time statistics. We note
that although the results necessarily decrease in quality as the number of observation angles
decreases, in the two-angle case, a very limited data case, the essential structure of the an-
nulus is still preserved. The gap in the annulus in the four-angle case can also be closed, by
reducing c3, but at the expense of additional spurious flanges like those in the bottom left
corner. These flanges in both results are caused by the tendency of the smoothing term to
smear high density regions along the observation direction. This is constrained by the seg-
mentation energy, which is why the flanges are limited in extent, but in the absence of more
data or prior knowledge, there is no way to eliminate them completely as possibilities.

The third experiment compares our model to Tikhonov regularization, i.e. φ ≡ 1 or φ ≡
−1. The results are shown in Fig. 4. The reconstruction in Fig. 4(b) is overly smooth
in the annulus region, while the background is too rough in Fig. 4(c). In the four-angle
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Figure 3: Reconstructions for annulus image. (a) reconstruction, (b) segmentation, (c) seg-
mentation superimposed on reconstruction, for 32 equispaced observation angles with 32
projections per angle. (d), (e), and (f) same, for 4 equispaced observation angles. (g), (h),
and (i) same, for 2 equally spaced observation angles. Computed segmentations in solid
green; true segmentations in dashed yellow.

case, the ring shape is much easier to distinguish from the background in Fig. 4(d), and is a
better reconstruction within the segmented region. For the two-angle case, the segmentation-
reconstruction method still computes something that is topologically an annulus, whereas the
annulus is barely identifiable in the Tikhonov regularized results.

4.2 Synthetic CME
In this section, we present results from experiments on the CME image in Fig. 1(c). These
are similar to the annulus experiments, except that we reconstruct the CME image from
two angles, at ±45◦, and three angles, at ±60◦ and 0◦, representing the best-case observing
configurations for the current generation of satellites. The results are shown in Fig. 5, which
is organized like Fig. 3. Tbl. 2 shows parameter values and run time statistics. Although
the results are naturally not as good as those on the synthetic images, in all three cases there
is a cavity within the CME, something that [7] does not achieve. There is spurious region
formation outside of the CME region, which might be an artifact of parameter settings that a
fully automatic method would correct, or it might require a more complex model E( f |φ ,K).

Finally, we compare our results to those obtained using Tikhonov regularization. The
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Observation Angles c1 c2 c3 Iter. Run Time
32 1.0 140.0 21.9 247 82.0s
4 1.0 225.0 33.0 67 10.5s
2 1.0 225.0 30.0 25 3.14s

Table 2: Parameter values and run time statistics for annulus image, Fig. 1(b). Corresponding
reconstructions are shown in Fig. 3.

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

(a)
1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

(b)
1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

(c)

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

(d)
1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

(e)
1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

(f)

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

(g)
1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

(h)
1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

(i)

Figure 4: Comparison of joint segmentation-reconstruction with Tikhonov regularized re-
constructions for annulus image. (a) Joint segmentation-reconstruction, (b) Tikhonov regu-
larized reconstruction with λ = λ−, (c) Tikhonov regularized reconstruction with λ = λ+,
for 32 equispaced observation angles and 32 projections per angle. (d), (e), and (f) same, for
4 equispaced observation angles. (g), (h), and (i) same, for 2 equispaced observation angles.

results are shown in Fig. 6. We see again that, even for the limited angle reconstructions,
the joint segmentation-tomographic reconstructions have definition in the CME region that
is not present in either of the Tikhonov regularized reconstructions.

5 Conclusion

We have presented a method for the reconstruction of CME electron density from corona-
graphs taken at a small number of observation angles, using an auxiliary segmentation to
constrain the density. Experiments show that our proposed method is significantly more
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Figure 5: Reconstructions for CME image. (a) reconstruction, (b) segmentation, and (c)
segmentation superimposed on reconstruction, for 32 equispaced observation angles with 32
projections per angle. (d), (e), and (f) same, for 3 equispaced observation angles. (g), (h),
and (i) same, for 2 equispaced observation angles.

effective than Tikhonov regularized tomography alone, and resolves issues with CME topol-
ogy and continuity of the density that affected previous work. Our model and optimization
method easily extend for the full 3D CME reconstruction problem, though further work on
parameter estimation is necessary to render the method automatic.
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