In this paper, we propose a new approach for calculating a user’s real point of regard (POR) using a head mounted binocular eye tracking system. We show that the coupling of one of the user’s eyes and the scene camera can be considered as a stereovision system. We then propose a new description for binocular eye trackers, in which we model them via pairs of stereovision systems having the scene camera in common. In this model, we use a hybrid fundamental matrix which allows to take into account the spherical shape of the eyeball model we use. Whatever the distance our model does not require any a priori information on the user’s morphology to calculate the POR.

We first described eye tracking system via a stereovision model. This model reveals that there is no longer a point-to-point relationship with a monococular eye tracker, but a point-to-line relation, i.e. to each position of the pupil will correspond a line in the scene camera (an epipolar line). Therefore, we suggest using a binocular eye tracker to determine the POR by the intersection of two epipolar lines.

![Figure 1: Model of the Eye-tracker system and the eye. Here, the eye’s surface is considered to be planar.](image)

The fundamental matrix noted \(F \) is the algebraic representation of the epipolar geometry. It only depends on the camera configuration (intrinsic and extrinsic parameters), not on the objects in the scene. For every point \(p_e \) (cf. figure 1) in the eye camera image the corresponding epipolar line is:

\[
D_p = F p_e \tag{1}
\]

The dimensions of the matrix \(F \) is \(3 \times 3 \). Knowing one of the two points \(p_s \) or \(p_e \), the following relation is equivalent to the corresponding epipolar line and constrains the matching of points:

\[
p_s^t F p_e = 0 \tag{2}
\]

The relation between the eye plane and the eye camera can be defined as a homography as follows:

\[
p_e = H p_e \tag{3}
\]

If \(F \) denotes the fundamental matrix between the scene camera and the eye, then the epipolar geometry between the eye camera and the scene camera, can be obtained by replacing \(p_e \) in equation (2), by the definition of \(p_e \) as of equation (3):

\[
p_s^t F H p_e = 0 \tag{4}
\]

We propose to extend the previous stereo model by assuming a spherical eye shape. Although this remains an approximation to the true shape, it is much better than a planar model. Also, we know from previous works [2] that the pupil’s displacement is well described by the eyeball model. It means that in any situation, the pupil center is located on a sphere.

In [1], it was shown that the epipolar geometry between a central catadioptric camera and a perspective one, can be described by a \(6 \times 6 \) “hybrid” fundamental matrix. We can transpose this directly to our case. Let us first write down the associated expressions and then explain their meaning and application. Let \(p \) be the POR and \(p_s = (x_s, y_s, 1)^t \) its image in the scene camera (we sometimes call this POR too). Let \(p_e = (x_e, y_e, 1)^t \) be the image of the pupil center in the eye camera. From the above observations and [1], it follows that there exists a fundamental matrix \(F \) of size \(6 \times 6 \) such that the epipolar constraint between \(p_s \) and \(p_e \) can be written as:

\[
\begin{pmatrix}
 x_s^2 & x_s y_s & y_s^2 & x_s & y_s & 1
\end{pmatrix}
\begin{bmatrix}
 6x_e
 6y_e
 6
\end{bmatrix}
= 0 \tag{5}
\]

This expression can be interpreted as follows. For a given point \(p_s \) in the scene camera, the possible matching points \(p_e \) in the eye camera, must lie on a conic (the above equation is quadratic in the coordinates of \(p_e \)), the epipolar conic. The other way round is similar; however, the epipolar conic in the scene camera, degenerates into a pair of lines (cf. figure 2). The reason for this is as follows: when back-projecting a point \(p_e \) to the sphere, there are two mathematical solutions for the intersection of the sphere and the back-projection line, the true one and a “parasite” solution. To each of these, corresponds a line of sight of the eye. The epipolar curve is thus the union of the images of two lines i.e. a pair of lines or a degenerate conic.

![Figure 2: Calculation’s simulation POR using a matrix F. Two lines (a) and (b) correspond to the conic of the left eye. Same for the right eye. The lines intersections give the 4 solutions for the POR.](image)
