A 2D+t Feature-preserving Non-local Means Filter for Image Denoising and Improved Detection of Small and Weak Particles

Lei Yang
trilithy@gmail.com
Richard Parton, Graeme Ball
(richard.parton, graeme.ball)@bioch.ox.ac.uk
Zhen Qi, Alan H. Greenaway
(zq15, a.h.greenaway)@hw.ac.uk
Ilan Davis
ilan.davis@bioch.ox.ac.uk
Weiping Lu
w.lu@hw.ac.uk

Denoising of images containing small and weak particle-like objects has many important applications in both civil and military areas [1,2]. A feature-preserving non-local means (FP-NLM) filter has been developed recently for denoising such images [3]. It explores the commonly used non-local means (NLM) filter to employ two similarity measurements taken in the original greyscale image and a feature image which measures the particle probability in the original image. In this paper, we report a new approach to image mapping for constructing the feature image by incorporating both spatial and temporal (2D+t) characteristics of objects. We present a 2D+t FP-NLM filter based on the improved particle probability image. Experiments show that this new filter can achieve better balance between particle enhancement and background smoothing for images under severe noise contamination and has a greater capability in detecting particles of interest in such environments.

Motion continuity is an unambiguous property for identifying objects of interest in an image sequence. We here make use of such property to improve the accuracy of particle classifications based on the spatial (2D) Haar-like features (HLFs) as depicted in Fig. 1(a-c) [3]. Assuming constant velocity and direction of particle-like objects in neighbouring frames, trajectories of a particle in N consecutive frames that pass through pixel i at time t + nΔt.

A particle probability image (PPI) based on 2D+t HLF classifications is defined as the ratio

$$P(i) = \frac{\left(\Delta N/N_{tot}\right)}{\Delta t}$$

where N_{tot} is the total number of pixels in a given area A_t centred at i; ΔN is the number of pixels satisfying Eq. (3) and spatially connected.

In our new 2D+t FP-NLM filter, the processed grey values of a noisy image F at pixel i are given as the weighted average of all pixel greyscale values in a search window W_i centred at i

$$FP_{NLM}2D+t(F(i)) = \sum_{j\in W_i} a(i,j)F(j)$$

where F' is a pre-processed image of F (eg. mean filtered) and $a(i,j) = \frac{1}{M}$$

$$\frac{V(N_i) - V(N_j)}{\sqrt{E_i}^2 + E_j^2} - \frac{|P(N_i) - P(N_j)|}{g^2}$$

the weight, $A(i)$ the normalization constant, $V(N_i)$ and $P(N_i)$ the vectors of the pixel grey values and the particle probability values taken from the neighborhood N_i, respectively. The first term in Eq. 6 measures the similarity of pixel grey values, as in the NLM filter [4], whereas the second term measures the similarity of particle probabilities between the same neighborhoods but taken from the PPI. By appropriately setting the parameters h and g, the two measurements can compensate each other to achieve more balanced feature preservation and background smoothing.

Fig. 2 shows the test results of a live image sequence of EB1-GFP, expressed in the Drosophila egg chamber where the microtubule cytoskeleton is complex and the imaging is challenging. The ROC curves demonstrate that 2D+t FP-NLM filtered image has higher sensitivity to pick out true particle pixels than several existing methods.

1 Department of Physics
Heriot-Watt University,
Edinburgh, UK
2 Department of Biochemistry
the University of Oxford,
Oxford, UK

References: