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Estimating the relative orientation of two cameras is a classical problem in
vision. Probably the most well-known method is the eight-point algorithm
introduced by Longuet-Higgins in 1981 [5], and modified by Hartley [3]
to include normalization. Although normalization made the algorithm
more robust, there are still algorithmic degeneracies and the algorithm
breaks down in the presence of outliers.

For calibrated cameras a guaranteed optimal algorithm minimizing
reprojection errors appeared just recently in [2] but it cannot handle out-
liers in the correspondence set. Thus, heuristic methods like hypothesize-
and-test approaches are normally used to remove outliers, [1, 4]. In this
paper we address the problem of uncertain correspondences by formulat-
ing it as a mathematical optimization problem. For calibrated cameras,
we provide both necessary and sufficient geometric constraints for an op-
timal solution. Based on this analysis, we propose an algorithm to find the
optimal set of correspondences as well as the optimal relative orientation.

To make this more precise, we say that a correspondence (x, x̄) is
consistent with a relative orientation (R, t) if there exists a 3D point X
such that its angular reprojection errors satisfy

∠(x,X) < ε and ∠(x̄,R(X− t)) < ε. (1)

Here ε is a predefined error tolerance. We seek a relative orientation
which is consistent with as many correspondences as possible.

Our approach is based on a branch and bound search over the possible
relative orientations. The following table gives an overview. First of all
we need to decide on an error tolerance and some lower bound on the
number of inliers of the optimal solution.

Iterate until desired precision is reached:
1. Pick a box from the queue.
2. Try to detect and remove outliers.
3. Try to discard the box.
4. If the box cannot be discarded:

- Divide the box and update the queue.
- Try improve the bound on the optimum.

5. Remove the box from the queue.

We will now look closer at some of the elements of this algorithm. In
order to get a simple constraints, we use a rather different parameteriza-
tion of the relative orientation. We introduce new bases in both cameras
with coinciding z-axes parallel to the epipole of camera 1 and define α to
be the relative rotation angle of these bases. Specifying these z-axes in the
local camera coordinate systems and specifying the angle α is one way to
define a relative orientation.

To introduce the constraints, we assume for a moment that there is
no noise. Consider the new coordinate systems introduced above and
corresponding spherical coordinates for the image points. For a consistent
correspondence, the difference between the azimuthal angles measured in
the first and second image will satisfy ϕ = ϕ̄ + α . It turns out that we
get simpler constraints if we choose to look at pairs of correspondences.
Naturally,

ϕ j−ϕk = ϕ̄ j− ϕ̄k. (2)

One way to view this is as the angle between epipolar planes, see Figure 1.
We will denote these angles γ jk = ϕ j −ϕk and γ̄ jk. Furthermore, to get
positive depths we require the polar angles to satisfy,

θ ≥ θ̄ . (3)

Now, if we allow reprojection errors these relations are no longer ex-
act, but the extra uncertainty can be handled and it can be shown that the
constraints are still sufficient for consistency. This is stated in Theorem 2
in the paper.
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Figure 1: The angle γ = ϕ j−ϕk between two epipolar planes.

So how do we handle outliers? Regarding the constraint on the polar
angles it is simple enough. A correspondence which does not satisfy this
constraint must be an outlier. For the pairwise constraints on ϕ it is more
complicated. A violated constraint only implies that one of the involved
correspondences is incorrect, but we need to determine which one. It
turns out that the problem can be solved by finding the minimal vertex
cover for an undirected graph. This is often referred to as the vertex cover
problem and there are many algorithms available, but for our purposes
rather simple approximations will be sufficient.

Returning to the main algorithm, note that we parameterized the rela-
tive orientation using two unit vectors and a rotation angle. To find the op-
timal values for these parameters we perform a branch-and-bound search
over the two vectors. The possible values thus lie in S2×S2 and we need
some method to search this space. We use a branch and bound approach
dividing the spheres into smaller and smaller spherical triangles. To check
the pairwise constraints, we need bounds on the possible values of the az-
imuthal angles. Our first observation is that it is sufficient to consider the
boundaries of the spherical triangles. This is Theorem 3 of the paper.

There is an apparent problem with this approach. The number of
constraints is quadratic in the number of correspondences, since we are
considering all pairs. To address this we compute simple under- and over-
estimators for ϕi. These can then be used to produce under- and overes-
timators for the γ jk’s in the first image and similarly for γ̄ jk in the second
image. This way most work is performed on the ϕ j’s making it linear in
the number of image points.

To our knowledge, the proposed algorithm is the first that is guar-
anteed to find the optimal relative orientation in the presence of outliers.
Theoretic discussions as well as experiments demonstrate its ability to
compute the globally optimal solution while discarding outliers. Execu-
tion times are still high for real-time applications but we believe that a
significant speedup is possible by saving results that can be re-used and
working on the function approximations.
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