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Abstract

This paper presents a new approach for face recognition based on the fusion of ten-
sors of census transform histograms from Local Gaussian features maps. Local Gaussian
feature maps encode the most relevant information from Gaussian derivative features.
Census Transform (CT) histograms are calculated and concatenated to form a tensor
for each class of Gaussian map. Multi-linear Principal Component Analysis (MPCA)
is applied to each tensor to reduce the number of dimensions as well as the correlation
between neighboring pixels due to the Census Transform. We then train Kernel Discrim-
inative Common Vectors (KDCV) to generate a discriminative vector using the results of
the MPCA. Results of recognition using MPCA of tensors-CT histograms from Gaussian
features maps with KDCV is shown to compare favorably with competing techniques that
use more complex features maps like for example Gabor features maps in the FERET
and Yale datasets. Additional experiments were done in the Yale B+ extended Yale B
Faces dataset to show the performance of Gaussian features map with hard illumination
changes.

1 Introduction

Face recognition can be defined as the identification of individuals from images of their faces
using a stored database of faces labeled with identity. Face recognition is a challenging task
due to the large variety of appearance that a face may exhibit under variations in illumination
and viewing position as well as variations in facial expression. It is common to consider the
problem of face recognition using the relatively controlled imaging conditions, such as for
passports and photo IDs, as a much easier problem then recognition from surveillance video
images under a large variation in pose, aging, illumination, occlusion and facial expressions
[1, 27].
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Many of the more successful approaches use Gabor wavelets as an image descriptor,
resulting in relatively high computational cost. For example, Zhang et al [26] propose
the use of Local Gabor Binary Pattern Histogram Sequence (LGBPHS) which combine the
magnitude part of Gabor feature and the LBP operator. In more recent work, Zhang et al
[25] have explored encoding the face image with a Global Gabor Phase Pattern (GGPP) and
a Local Gabor Phase Pattern (LGPP) derived under variations in orientation for the Gabor
wavelet at a given scale (or spatial frequency). Tan and Triggs [18] use a fusion of Gabor
and LBP feature sets, those feature sets are normalized in illumination and the process of
recognition is improved with Kernel Discriminative Common Vectors (KDCV) [2].

In this work, we have explored the use of Gaussian derivative features calculated with a
linear complexity half-octave Gaussian pyramid [5]. Derivative features have been used as a
feature set for view invariant object recognition by Yokono and Poggio [23]. Gaussian fea-
tures has been used with success in multidimensional receptive field histograms by Schiele
and Crowley [17], invariant object recognition [8] and image descriptor [11, 19].

In this paper we associate Gaussian features by the nature of information that is encoded.
Original scale space encode textural information and characteristic scale [10], first order
Gaussian derivatives encode information from edges and sharp contrast changes. Second
order Gaussian derivatives capture information about structure from bars, blobs and corners.
We consider these different classes of Gaussian derivative features to provide complementary
information.

In section 4, we propose a tensorial representation for Gaussian derivative histograms.
Our method is inspired by recent work on face recognition by Rana et al [15]. This represen-
tation retains the spatial structure without loss of information due to vectorization of features
as occurs in earlier approaches [25, 26]. In our approach, local difference of samples in a
half-octave Gaussian pyramid are used to compute Gaussian feature maps. For each loca-
tion in each Gaussian map, a Census Transform histogram is calculated and concatenated to
form a local tensor. Only one tensor is computed for each class of Gaussian map. An MPCA
(Multilinear Principal Component Analysis) [12] method is then applied to each tensor to
reduce the dimensionality and inter-correlation due to the Census Transform. Finally we
apply the KDCV (Kernel Discriminative Common Vectors) method to generate a discrimi-
native vector as is explained in the sections 3 and 4. The experimental presented in section
5 and 6 demonstrate that this method improves recognition rates compared techniques when
used with the Feret and Yale datasets.

2 Gaussian Derivative Features
This section describes how a half octave Gaussian pyramid can provide very fast computation
of a local Gaussian norm jet composed of derivatives features of order 0, 1 and 2. This
algorithm has a linear algorithmic complexity and is easily implemented on GPU or other
SIMD style computing devices.

2.1 The Gaussian Jet
Koenderink has described how the visual appearance of a neighborhood can be represented
by a local Taylor series expansion [9]. The coefficients of this Taylor series constitute a
feature vector, referred to as the "Local Jet" that compactly represents the neighborhood
appearance for indexing, matching and recognition. Ter Haar Romeny and others [16], have
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shown that invariance to scale and orientation can be obtained when the local jet is computed
using Gaussian Derivatives. The basis functions for this expansion are local derivatives
computing using a Gaussian support:

G(x,y,σ) =
1

2σπ
e

x2+y2

2σ2 (1)

Where σ is a scale factor that expresses the size of the support in terms of the second
moment (or variance). This function is sometimes referred to a Gaussian Receptive Field
[17]. The first and second derivatives of the Gaussian support are:

Gx(x,y,σ) =
∂G(x,y,σ)

∂x
=− x

σ2 G(x,y,σ) (2)

Gy(x,y,σ) =
∂G(x,y,σ)

∂y
=− y

σ2 G(x,y,σ) (3)

Gaussian derivative features capture information about changes of the surface normal
and measure the intensity of edges [23]. The second order derivates are given by:

Gxx(x,y,σ) =
∂G(x,y,σ)

∂ 2x
=

(
x2

σ4 −
1

σ2

)
G(x,y,σ) (4)

Gyy(x,y,σ) =
∂G(x,y,σ)

∂ 2y
=

(
y2

σ4 −
1

σ2

)
G(x,y,σ) (5)

Gxy(x,y,σ) =
∂G(x,y,σ)

∂x∂y
=

( xy
σ4

)
G(x,y,σ) (6)

The second order derivatives are good descriptors for image features such as bars, blobs and
corners. Higher order Gaussian derivatives are more sensitive to the image noise and can
provide useful information in cases where the second order derivatives are stronger [8].

The use of Gaussian derivatives is motivated by their capacity to describe image neigh-
borhoods and also by their representation of image appearance in specific orientations and
frequencies [23]. This representation is well suited for object detection and learning.

2.2 The Half-Octave Gaussian Pyramid
Computing a scale invariant local Jet for an M = NxN pixels image requires computing sec-
ond order derivatives of the image at log2 N scales. A linear complexity pyramid algorithm
for this calculation has been known since the 1980’s [4]. The result of this algorithm is a
half-octave Gaussian Pyramid. An integer coefficient version of this algorithm [5] has been
demonstrated using repeated convolutions of the binomial kernel (1,2,1]. Implementations
that compute such pyramids on PAL sized images (and faster) exist for the current generation
of computer stations, and can be embedded in dedicated a signal processor. The half-octave
Gaussian pyramid for an NxN pixels image is composed of up to K = log2(N) images. Each
image, k ∈ [1,K] of the pyramid has been convolved with a Gaussian filter, G(x,y,2

k
2 ), and

can be resampled with a sample distance of 2k/2, resulting in a constant ratio of scale over
sample distance. The resulting "pyramid" represents the original NxN pixels image with a
sequence of K = 2log2 N images at a geometric progressions of scales each with half the
number of samples of the previous, resulting in a total of 2xNxN samples.
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The Gaussian pyramid for an M = NxN pixels image can be computed in O(M) opera-
tions using cascade convolution with resampling [3]. This algorithm involves alternatively
convolving with a Gaussian support, and resampling the resulting image with a sample dis-
tance of

√
2. The effect of cascade convolution is to sum the variances of the filters, so

that the cumulative variance is σ2
k = 2k and the resulting standard deviation is σk = 2k/2.

Interleaving resampling with convolutions decreases the number of image samples while ex-
panding the distance between samples. This has the effect of dilating the Gaussian support
without increasing the number of samples used for the Gaussian, effectively increasing the
scale. Aliasing is avoided (or minimized) by the fact that the image has been low-pass filtered
by previous convolutions. The result is an algorithm with linear algorithmic complexity (i.e.
O(M)) producing a discrete representation of scale space with 2M total samples. The image
is initially convolved with a filter of σ0 = 1 to produce an initial image P(x,y,0).

k = 0 : P(x,y,0) = P(x,y)∗G(x,y,1) (7)

Where ”∗” is the convolution operator. The pyramid image (k = 1) is produced by a convo-
lution with the same low pass filter, resulting in a cumulative scale factor of σ2

1 = 4 giving
σ1 = 2.

P(x,y,σ) = S√
2

k{P(x,y,k−1)}∗E√
2

k{G(x,y,1)} (8)

Where S√2{} is the "diagonal" resampling operator and E√
2

k{} is an diagonal expansion
operator defined as:

S√
2

K{P(x,y)}=
{

P(x,y) if (x+ y)2Mod(2k−1)
0 otherwise

(9)

E√
2

K{G(x,y)}=
{

G( x+y
2K/2 , x−y

2K/2 ) if (x+ y)2Mod(2k−1)
0 otherwise

(10)

The k = 0 image may be discarded or used for estimating a Laplacian image for k = 1
if required. Because the k = 1 image has been smoothed with a Gaussian low-pass filter
of scale σ = 2, resampling with a sample distance of

√
2 will result in an aliasing of less

than 1% of signal energy. Gaussian derivatives are easily calculated in the row and column
directions from these images by differences of adjacent pixels. Assuming that the space
between samples at level k is s = 2(k−1)/2 pixels, the image differences are:

∂P(x,y,k)
∂x

= P∗Gx(x,y,2k/2)≈ P(x+ s,y,k)−P(x− s,y,k) (11)

∂P(x,y,k)
∂y

= P∗Gy(x,y,2k/2)≈ P(x,y+ s,k)−P(x,y− s,k) (12)

∂ 2P(x,y,k)
∂ 2x

= P∗Gxx(x,y,2k/2)≈ P(x+ s,y,k)−2P(x,y,k)+P(x− s,y,k) (13)

∂ 2P(x,y,k)
∂ 2y

= P∗Gyy(x,y,2k/2)≈ P(x,y+ s,k)−2P(x,y,k)+P(x,y− s,k) (14)
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∂ 2P(x,y,k)
∂ 2xy

= P∗Gxy(x,y,2k/2)

≈ P(x+ s,y+ s,k)−P(x+ s,y− s,k)−P(x− s,y+ s,k)+P(x− s,y− s,k)
(15)

Derivatives along diagonal directions can be computed using diagonal differences. Free-
man and Adelson [6] have shown how a basis set of Gaussian derivatives can be "steered" to
a desired orientation by weighting the derivative terms with the appropriate sine and cosines
terms. Using their technique it is relatively easy to define a steerable basis for the Gaussian
jet. If needed, Gaussian derivative features may easily be determined for image positions
between image samples using bilinear interpolation, while Gaussian derivative features for
scale values between the powers or root 2 can be computed using quadratic interpolation
between adjacent levels in the pyramid. However, our experience is that the information
encoded by such interpolated features is redundant with the existing features and does not
contribute to object recognition.

3 Census Transform of Gaussian Features Maps
Gaussian derivatives features of first and second order capture information about edges, bars
and blobs [23]. In our approach Gaussian feature maps are obtained by computing Gaussian
derivative features of first and second order at four different orientations 0,π/4,π/2 and
3π/2 at 6 levels from the half-octave pyramid, corresponding to σ =

√
2,2,2

√
2,4,4

√
2,8.

These values have been determined by experimentation. We used also the feature maps
from the zeroth order Gaussian pyramid. This descriptor provide a textural description that
complements the information given by Gaussian Derivatives Features.

The total number of Gaussian maps calculated in our approach is 66. For Gaussian
derivatives features of first order we compute 24 Gaussian maps (4 orientations and 6 lev-
els), for Gaussian derivatives features of second order we compute 30 Gaussian maps (4
orientations, 6 levels plus the maps of Gxy) and finally we use 6 Gaussian maps resultant
from original scale space in the first six levels of the pyramid.

For each Gaussian map, we apply a Census Transform Operator (CT) [24]. This operator
compares the intensity values of a pixel with their eight neighboring pixels to obtain an 8-
binary string, which is converted in to a decimal number between 0 and 255.

The Census Transform operator is robust to illumination changes and gamma variations.
In the case of Gaussian features maps, the Census Transform captures information about
local discontinuities due to edges, bars and blobs and reinforces the textural information
encoded in the scale space and the second order Gaussian Jet Norm.

4 Tensors of Census Transform Histograms
A Census Transform encodes information about local appearance using Gaussian feature
maps. For face recognition, we also need to capture information about the spatial distri-
bution of features. A number of possible solutions exist such an encoding [20, 25, 26].
One problem with most approaches is that they do not conserve spatial structure but rather
concatenate the histograms to form one unique vector. To avoid this problem, we propose
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a Tensors of Census Transform Histograms. Such tensors encode the spatial information
within the images.

We separate the Census Transform maps by type of information in the following order:
first by Gaussian derivative features of first order, second by Gaussian derivatives Features of
second order, third by the original Gaussian scale space. This separation is used to conserve
the individual discriminative power of each representation. We divide each CT-Gaussian
Feature map into non-overlapping rectangular sub-regions with specific size and a set of
histograms is computed for each sub-region. These histograms encode the most relevant
textural and spatial information in manner that is robust to illumination changes. In previous
work, such histograms were calculated and concatenated to form a single vector [18, 20, 25].
The inconvenience of this approach is the large size of the final vector as well as the loss
of information due to concatenation in only one single vector as each histogram has been
calculated in a specific position, for a specific level resulting in a loss of the natural spatial
3-D organization. To avoid this, we propose to organize the histograms in a Tensor, thereby
conserving the 3-D structure of Census Transform Gaussian maps.

We show an example of such a Tensor in the figure 1 (A). In our approach we calculated
a 4-D tensor for each kind of Census Transform Gaussian feature, one for the Gaussian
derivatives features of first order T1, another for the Gaussian derivatives features of second
order T2 and the last is calculated with the Gaussian scale space TG. As a result we obtain 3
tensors.

T1 ∈ℜ
Nθ xNbinsxNxxNins (16)

T2 ∈ℜ
Nθ∩Gxy xNbinsxNxxNins (17)

TG ∈ℜ
NfeatxNbinsxNxxNins (18)

Where Nθ is the number of orientations, Nx is the number of positions in which one
histogram has been calculated, Nbins is the number of bins used in each histogram, Nθ∩Gxy

are the same orientations of Nθ plus the mixed orientation of the census transform map from
Gxy, N f eat is census features maps for G0 and Nins are the face images used to calculate the
CT Gaussian features maps.

4.1 Fusing CT Tensors Histograms with MPCA
In a recent paper, Wu and Rehg [20] experimentally demonstrated the correlation in neigh-
boring pixels for Census Transform histograms. This correlation can be interpreted as re-
dundant information. Wu and Rehg proposed to eliminate this redundant information using
Principal Component Analysis of each histogram.

In a similar manner, our tensorial representation has a large redundancy as may be seen
in the correlation in both the index Nbins and also in the indexes in each tensor. To reduce
this correlation while conserving the spatial distribution of tensors, we propose the use of
Multilinear Principal Component Analysis (MPCA) as suggested by Lu et al [12]. Their
method determines a multilinear projection that captures most of the original tensorial input
variation and supplants existing heterogeneous solutions such as the classical PCA and its
2-D variant 2-D PCA.

We describe MPCA similar to [12] and [15]: T is an n′th order tensor and T ∈
ℜN1xN2x...Nn , the MPCA is defined as the application of n-mode Single Value Decompo-
sition.
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Figure 1: An example of the construction for a tensor in our method (A), Overall architecture
of our face recognition system (B)

This orthogonalizes the ”n” associated vector spaces of and decomposes the tensor as:

T = Sx1U1x2...xkUK...xnUn (19)

Where,xk denotes mode−k product and Uk the orthonormal matrix that contains ordered
principal components for the kth mode. S is called the core tensor of projection tensor.

In our approach we apply MPCA to each tensor T1, T2 and TG. The resultant vector of
features for each tensor are: v1, v2 and v3 respectively. We retain the first mk components
from each vector. Generally the number of retained components in a PCA approach without
lost of information is:

mk ≤ (ins,dim(vk)) (20)

Where ins is the number of face images used to compute the tensors and dim(vk) is the
dimension of each resultant vector. We then combine all of the resultant vectors to form a
single normalized feature vector.

vtest = cat(v1,v2,v3) vtest ∈ℜΣmk (21)

We have found that the discriminative power of each final vector vtest can be improved
by projection onto an optimal discriminative space with a KDCV [2] (Kernel Discriminative
Common Vector). This kernel method has been proved with success in [18]. The character-
istic equation for the KDCV is:

ltest =
(

UΛ
1/2V

)T
ktest ltest ∈ℜt (22)
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Where Λ is the diagonal matrix with non-zero eigenvalues, U, the associated matrix
of normalized eigenvectors, V is the basis for the null space of the projected within-class
scatter matrix and ltest is a vector with entries K(vt

i,vtest) = 〈φ(vt
i),φ(vtest)〉, where φ(vt

i) are
the mapped training samples in a high dimensional space and K() is a typical kernel, for
details see [2, 18].

The projected ltest is classified using the nearest neighbor rule and the cosine distance.

dcos(ltest , ltemp) =−
lT
test ltemp

‖ltest‖‖ltemp‖
(23)

Figure 1 (B), summarizes the overall architecture of our face recognition system that has
been described above.

5 Experimental Evaluations

In this section, we present the results of experiments designed to illustrate the effectiveness of
the proposed method. We use three publicly available face databases: The FERET [14] Yale
and the Yale B + Extended Yale B [7] face datasets. In all of our experiments, the images
were cropped using manually located eyes positions and normalized at size of 128x128. No
attempt is made to normalize for illumination. To calculate Histograms of CT Gaussian
maps, we used a sub-region size of 16x16, removing two bins corresponding to CT = 0, 255
per each histogram. The others bins are grouped to form a 127 bin histogram. We used
a Matlab R© implementation of the MPCA algorithm provided by [12]. For each tensor,
the mean tensor has been subtracted and the final concatenated vector has been normalized
to a unit standard deviation. For the KDCV algorithm we used Gaussian kernels k(x,y) =
e−‖x−y‖2/2σ2

with scale parameter ó chosen experimentally to obtain the best results.

5.1 Experiments with the FERET dataset

To test the robustness of our approach against variations in facial expression, lighting and
aging, we evaluated the proposed method on all four FERET probe sets: the ’fb’ set contains
faces with variation in expression, the ’fc’ set with lighting variation and the ’dup I’ and
’dupII’ sets contain variation dues to aging of the subject. We used the FERET distributed
training set plus the gallery images ’fa’ to train the KDCV. As shown in [18], the addition of
the gallery increases the dimensionality of the final discriminative space. We have compared
our results with the best results in the FERET’97 test [14] and the published results in
[13, 18, 25, 26]. The rank-1 recognition rates of different methods on the FERET probe sets
are show in Table 1. To our knowledge, the results in [18] and [13] are the most recent
state-of-the-art with the FERET database.

Our results with the FERET database are statistically equivalent (with a difference of
±0.01 ) or better to the most recent state-of-the-art results on this dataset. Note that most
of the methods described in [25] [26] and [13] use the Gabor wavelets to generate their
maps. These wavelets have a much higher algorithmic complexity and overall computing
cost that is not improvable. On the other hand, our Gaussian derivatives features calculated
with the half-octave pyramid to generate feature maps [5], can be provided with a fast linear
complexity algorithm, and are thus much more suitable for real applications.

Citation
Citation
{Cevikalp, Neamtu, and Wilkes} 2006

Citation
Citation
{Tan and Triggs} 2007

Citation
Citation
{Phillips, Moon, Rizvi, and Rauss} 2000

Citation
Citation
{Georghiades, Belhumeur, and Kriegman} 2001

Citation
Citation
{Lu, Plataniotis, and Venetsanopoulos} 2008

Citation
Citation
{Tan and Triggs} 2007

Citation
Citation
{Phillips, Moon, Rizvi, and Rauss} 2000

Citation
Citation
{Lui and Beveridge} 2008

Citation
Citation
{Tan and Triggs} 2007

Citation
Citation
{Zhang, Shan, Chen, and Gao} 2007

Citation
Citation
{Zhang, Shan, Gao, Chen, and Zhang} 2005

Citation
Citation
{Tan and Triggs} 2007

Citation
Citation
{Lui and Beveridge} 2008

Citation
Citation
{Zhang, Shan, Chen, and Gao} 2007

Citation
Citation
{Zhang, Shan, Gao, Chen, and Zhang} 2005

Citation
Citation
{Lui and Beveridge} 2008

Citation
Citation
{Crowley and Riff} 2003



RUIZ-HERNANDEZ et al.: FACE RECOGNITION FROM GAUSSIAN FEATURES MAPS 9

Table 1: The Rank-1 Recognition Rates of Different Algorithms on the FERET Probe Sets

FERET Probe Sets
Method fb fc Dup1 Dup1

Best Results [14] 0.96 0.82 0.59 0.52
LGBPHS_Weighted [26] 0.98 0.97 0.74 0.71
HGPP_Weighted [25] 0.97 0.99 0.80 0.78
Gabor+LBP_KDCVM [18] 0.98 0.98 0.90 0.85
GRM-Local [13] 0.98 0.98 0.80 0.84
Our Method 0.98 0.98 0.90 0.85

Table 2: The Rank-1 Recognition Rates of Diferent Algorithms on The YALE Face Dataset

Method Recognition Accuracy
Eigenfaces [1] 76.0%
2DPCA [22] 84.2%
Fisherfaces [1] 96.0%
DCVM [1] 97.3%
Our Method 98.2%

5.2 Experiments on the YALE database

To evaluate robustness to variations in expression we used the YALE face database, which
contains 165 images of 15 individuals under various facial expressions (with glasses, happy,
without glasses, normal, sad, sleepy, surprised and wink) and lighting conditions (center,
right and left light). Images with a neutral facial expression are used as gallery set. We
augment the gallery set with images without glasses to train the Kernel DCV. The remaining
images are used as a probe set to compare our results with the results presented in [1, 22].
The rank-1 recognition rates of different methods on the YALE dataset are shown in the
Table 2. Clearly the results of the proposed method are better than the best results reported
in [1] and [22], demonstrating reliability of our method under changes in facial expression.

5.3 Experiments on the Yale B + extended Yale B database

The Yale face dataset B contains images obtained from 10 individuals. Images are cap-
tured under 64 different lighting conditions from 9 pose views and are divided into 5 subsets
according to the ranges of the illumination angles between the light source direction and
the camera axis. The extended Yale-B dataset contains 16128 images of 28 human sub-
jects captured under the same condition as Yale B. In our experiments, we use only the
frontal face images from these two databases. The images with the most neutral illumination
A+000E+00 are used as gallery set. To train the Kernel DCV we take the images in the
gallery set and a randomly selected image from the first subset. We did not test our method
with the challenging subset 5. The rank-1 recognition rates of different methods on the Yale
B + extended Yale B dataset are show in the Table 3. In this case we outperformed the pub-
lished results in [21] for the subset number 3 and we have the same results for the subsets 1
and 2. Note that while the results reported in [21] are for different methods of illumination
normalization, we do not normalize the images for changes in illumination and our method
does not try to specifically solve this problem.
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Table 3: The Rank-1 Recognition Rates of Different Algorithms on The YALE
B+EXTENDED YALE-B Face Dataset

Subset Number
Method 1 2 3 4

LTV [21] 100.0% 99.8% 79.4% 76.1%
RLS(LOG-DTC) [21] 100.0% 100.0% 87.1% 87.6%
Our Method 100.0% 100.0% 94.7% 60.1%

6 Conclusion and Discussion
This paper presents a new algorithm for face recognition that uses the Census Transform
histograms from Gaussian features calculated with a half octave Gaussian pyramid. This
method does not require any correction for variation of illumination, and yet is robust to
illumination changes. The method uses Gaussian derivatives features obtained with a fast,
linear complexity pyramid algorithm, and yet obtains results that are comparable or better
than more computationally expensive methods using Gabor Wavelets. We avoid the prob-
lems of loss of spatial information by using a tensorial representation for the local histograms
calculated from the CT Gaussian maps. Finally Multilinear Principal Component Analysis
and the Kernel Discriminative common vectors are used to lower the information correlation
and improve the recognition accuracy. Experimental evaluations of the proposed approach
on the FERET, Yale and Yale B + extended Yale B datasets showed the effectiveness and ro-
bustness of CT histograms from local Gaussian features to the general variations of lighting
and expression.
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