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Colorization problem is to find the colors of all pixels X = {xn}n=1,...,|X |,
given a grayscale image I with scribbles S with the desired colors. We
work in the YUV color space where Y = {yn}n=1,...,|X | is the monochro-
matic luminance channel, which we will refer to simply as intensity, while
U = {un}n=1,...,|X | and V = {vn}n=1,...,|X | are the chrominance channels,
encoding the color. Our goal is to complete both the U and V channels,
given Y = I. We deal with the only U channel in this paper, since the V
channel can be treated in the same manner.

In this paper, we propose a new multi-layer graph model and an en-
ergy formulation that can incorporate higher-order cues for reliable col-
orization of natural images. In contrast to most existing energy functions
[3] with unary and pairwise constraints, we address the problem of impos-
ing a high-order constraint whereby pixels constituting each region tend
to have similar colors to the representative color of the region they belong
to. The representative colors of the regions that are generated by unsu-
pervised image segmentation algorithms, act as higher-order cues. Unlike
previous parametric models [2], they are automatically obtained by a non-
parametric learning technique that estimates them from the resulting pixel
colors in a recursive fashion. We formulate this problem in terms of two
quadratic energy functions of pixel and region colors, that are supplemen-
tary to each other, in our proposed multi-layer graph model and estimate
them by a simple optimization technique that minimizes both functions
simultaneously.

Our proposed algorithm works as follows. We first design an undi-
rected graph G = (Q,E) where the nodes Q = {X ,R} consist of two types:
pixels X and regions R, generated by an unsupervised segmentation algo-
rithm such as Mean Shift [1], and the edges E are the links between two
nodes as shown in Fig. 1(a). Each pixel xn ∈ X initially has an intensity
yn ∈ Y . For each region rk ∈ R, we can generate its properties ȳk as the
mean intensity of the inner pixels xn ∈ rk: ȳk = 1

|rk| ∑xn∈rk
yn. We then

formulate both quadratic energy functions JX and JR for estimating the
pixel colors U = {un}n=1,...,|X | and the region colors Ū = {ūk}k=1,...,|R|,
respectively, as follows.
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k )2 + ε ∑

rk∈R
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in Fig. 1(b) are defined as the normalized weights. In a subset X+ of X ,
each node xn ∈ X+ represents the pixel with user-given color u+

n ∈U+.
We similarly select a subset R+ of R, where each node rk ∈ R+ is a re-
gion containing at least one pre-defined pixel, and it has the initial color
ū+

k ∈ Ū+, defined as the mean color of inner pre-defined pixels. Three
weighting parameters λ , τ , and ε are initially fixed for our all experi-
ments. The common energy model is characterized by the energy func-
tion only defined in unary and pairwise terms. Note that in our work,
we propose to use the additional higher-order term E X

region in (1) with a
constraint whereby a pixel color should be similar to its corresponding re-
gion color. Unlike the hard color consistency constraints that were used in
other conventional region-based methods, the color consistency between
its inner pixels is partly enforced with a weight τ . In (2), the third term
E R

pixel is also proposed as another estimated unary constraint whereby a
region color should be similar to the mean color of inner pixels. This
term has the effect of refining the region colors from more informative
pixel colors, when there is less color information from user-inputs.
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Figure 1: Illustration of a proposed graph. A node Q = {X ,R} denotes
a pixel xn,m ∈ X (green circle) or a region rk,l ∈ R (violet circle). The
boundaries of the regions, generated by unsupervised segmentation algo-
rithm [1], are drawn in red color overlaid on the image in (a). (a) shows
an example of the edges between a region and its corresponding pixels
with violet lines. In (b), the weights W = {WX,WR,WH} are assigned to
E = {EX,ER,EH} and classified by different criteria.

(a) (b) (c) (d) (e)

Figure 2: Colorization results on the natural images. (a) Input images
with color scribbles. (b) Regions generated by an unsupervised image
segmentation algorithm [1]. Colorizations by (c) Yatziv et al. [4]; (d)
Levin et al. [3]; (e) Our algorithm.

Since two quadratic energy functions JX and JR in (1) and (2) are con-
vex and supplementary to each other, we simply minimize them together
by differentiating their matrix forms JX and JR with respect to two vectors
~u = [un]|X |×1 and ~̄u = [ūk]|R|×1, respectively, and set to zero. We finally
have the colors of all pixels X and regions R for the colorization problem
by a sparse matrix inversion technique.

Fig. 2 shows our final colorization results on natural images, com-
pared with those of [3] and [4]. In Fig. 2(c), the results by [4] are largely
sensitive to the size and position of each scribble. Fig. 2(d) shows that
the method in [3] produces the over-smoothed results with color artifacts
visible especially near edges away from the scribbles. In contrast, our
approach provides superior performance with much higher-quality col-
orization results as in Fig. 2(e). These comparisons clearly confirm the
robustness and accuracy of our algorithm.
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