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Most current state-of-the-art detectors are based on either the sliding-
window (e.g. [1]) or the Generalised Hough transform paradigm (e.g. [2]).
This paper bridges the gap between the two paradigms and leverages their
advantages. Our framework benefits from the sound sliding-window rea-
soning and provides a well-grounded mathematical explanation to the vot-
ing procedure of the Implicit Shape Model (ISM) [2]. It thereby over-
comes the questionable marginalisation over features justification. More-
over, it allows for discriminative voting weights which was not possible
in ISM. We present a Gaussian Mixture Model implementation of our
framework which achieves state-of-the-art performance.

The second key contribution deals with commonly used heuristics
such as soft-matching and spatial pyramid descriptors. Both can be ex-
pressed formally within our framework. More importantly, we show that
they can be avoided during detection without loosing their positive effect.
This is achieved by moving them entirely to the learning stage where they
act as model regularisation.

Sliding-Windows meet the Hough Transform. Object detec-
tion by means of sliding-windows forms the basis of our framework. It
formulates object detection as a search problem. Given a new image I,
the goal is to find the best hypothesis

λ
∗ = argmax

λ∈Λ

S(φ(λ , I)|W ) (1)

from the search space Λ. φ is a windowing function which crops out
sub-images and S is the score function which ranks these hypotheses ac-
cording to a learned model W . Although this process is massively parallel,
most implementations process one hypothesis after the other which moti-
vates the term sliding window.

Footprint & Invariants. A key contribution of this work is to ex-
tend the notion of “windowing” to what we call the object footprint φ .
The basic idea is to compute a representation of the object which is in-
dependent of its position and size (and pose, etc.) in the image. This is
achieved by computing invariants I(λ , f ) of extracted image-features f
and the object-hypothesis λ . The use of such invariants makes the mod-
elling of geometrical transformations explicit. This is an important aspect
when it comes to e.g. view-invariant object recognition.

Hough-Transform. The final step towards the Hough transform is
to use a linear model which scores hypotheses by (details omitted)

〈φ(λ , I),W 〉= ∑
f∈F (I)

fω ·W ( fc,I(λ , f )), (2)

where F (I) is the set of features (extracted from the image), fc is the
index of the best-matching visual word (in a learned vocabulary), and
fω is a feature weight (e.g. accounting for matching quality). This form
makes the connection to the Hough transform explicit. The function
W ( fc,I(·, f )) acts as voting pattern. It is simply a re-parametrisation of
the model weights.

Discussion & Benefits. Our score is structurally similar to the prob-
abilistic formulation of ISM [2] , i.e.

p(λ |I) = ∑
f∈F (I)

p( f |I) · p(λ | f ), (3)

where the summation is explained by means of marginalisation. However,
as we will explain, this argument is not justified. Our framework avoids
such questionable arguments by following a clean sliding-window rea-
soning. Compared to ISM’s density-based formulation (which imposes a
non-negativity and normalisation constraint), our model is unconstrained.
Thus, the voting weights W can be negative and learned in a discrimina-
tive fashion. This is an important advantage in practice as most state-of-
the-art detectors rely on discriminative learning.
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Figure 1: PRISM: From the Sliding-Window (top) to the Hough Transform
paradigm (bottom). 1D example with two visual words (blue rectangle, cyan cir-
cle). A footprint (a) gets extracted for a fixed hypothesis λ ∗ (red). The inner prod-
uct with the weight function (b) results in a sum of point evaluations (red dots).
Various features do not affect the score (shaded). Each extracted feature (c) casts
a voting pattern (d) which, summed up, result in the final hypothesis score (e).

Implementation. Our implementation is based on Gaussian Mix-
ture Models for the weights W . The aim is to overcome ISM’s strong
dependence on the training data size due to its non-parametric kernel den-
sity estimators. In such a setting, a clever choice of the invariant I is
important, which we will discuss. The search for hypotheses is imple-
mented through gradient based search techniques which relates to ISM’s
mean-shift search. We further present a simple mixture-dropping heuris-
tic which leads to a significant speed-up.

Fast Soft-Matching. Soft-matching is a heuristic where a feature
activates multiple codewords from the visual vocabulary, instead of just
the best matching one. This has proven very effective to increase robust-
ness against quantisation effects [3]. Another common practice is the use
of spatial-histogram pyramids instead of flat histograms. Unfortunately,
the downside of both is an increase of computational costs, due to more
emitted votes or increased dimensionality (of the pyramid). We show that
both can be avoided during detection without missing their positive effect.
We argue that both heuristics lead to model regularisation which should
be done entirely during learning. This then allows for simpler and faster
detection systems.

The simple, yet effective trick is to consider a linear mapping φ 7→ Bφ

of the footprint. In case of the spatial pyramid, B is a matrix which con-
structs the pyramid from the flat histogram. Then, the score is computed
as 〈Bφ ,W 〉 = 〈φ ,B′W 〉 where B′W can be pre-computed during train-
ing. The left-hand side is the usual pyramid-matching while the right-
hand side operates in the low-dimensional (flat) histogram space. For
soft-matching, B can be interpreted as blurring of the single (per feature)
Dirac of the footprint. This results in multiple codeword activation with
decreasing weights. Following this interpretation, B′W can be thought of
as a blurring of the learned model.

We experimentally show that soft-matching during detection only de-
grades results if blurring during learning was sufficiently strong. Hence,
fast nearest-neighbour matching can be used for detection without loss of
performance.
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