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Intro: We propose several new ideas of how to use 3D models for view-
based object recognition. In an initial experiment we show that even the
simple task of distinguishing between two objects requires large train-
ing sets if high accuracy and pose invariance are to be achieved. Using
synthetic image data, we propose a method for quantifying the degree of
difficulty of detecting objects across views and a novel alignment algo-
rithm for pose-based clustering on the view sphere. Finally, we introduce
an active learning algorithm that searches for local minima of a classifier’s
output in a low-dimensional space of rendering parameters.
Experimental setup: Synthetic training and test images were rendered
from five textureless 3D models (see fig. 1) by moving a virtual camera
on a sphere around each model. The models were illuminated by ambient
light and a point light source. The six free rendering parameters were the
camera’s location in azimuth and elevation, its rotation around its optical
axis, the location of the point light source in azimuth and elevation, and
the intensity ratio between ambient light and the point light. The ren-
dered images were converted to 23×23 grayvalue images. From those we
extracted 640 dimensional vectors of histograms of gradients. Our main
classifier was an SVM with a Gaussian kernel.

Figure 1: 3D computer graphics models (top) and examples of synthetic
images used for training and testing (bottom).

Size of training data: Our first set of experiments dealt with the pose-
invariant discrimination between two objects. SVMs were trained and
tested on all pairs of objects and compared to nearest neighbor classifiers.
Fig. 2 shows the ROC curves for one object pair computed on training
sets with sizes between 2,000 and 40,000 samples per class. In all cases,
even the ones where the objects looked very different from each other, the
best results were achieved with the largest training sets. The large number
of support vectors and the poor recognition rates of the nearest neighbor
classifiers are further indicators that the learning tasks, simple as they
might have seemed initially, are non-trivial and require large training sets.

0 0.01 0.02 0.03 0.04 0.05
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Error

C
or

re
ct

SVM: bear−elephant

 

 

02000 02599  3.9825
04000 04157  2.5275
08000 06299  1.5438
16000 09554  0.8050
32000 14178  0.3825
40000 16066  0.2912
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Nearest Neigbor: bear−elephant

 

 

02000 5.8083
04000 4.1167
08000 2.6750
16000 1.5417
32000 0.8833
40000 0.6750

Figure 2: ROC curves for pairwise object recognition, SVM left, nearest
neighbor right. The legends contain the number of training samples per
class, the total number of support vectors, and the equal error rate (EER)
in %.

Pose-invariant object detection: The second set of experiments dealt
with pose-invariant object detection. We tried to quantify the degree of
difficulty of detecting views of a given object across the view sphere. To
do so we computed the mean Euclidean distance in the feature space of

each view on the sphere to its nearest neighbors in a large class of back-
ground samples, i.e., we based our measure only on the most difficult
examples in the background class. The results differed substantially be-
tween objects and between views of the same object (see fig. 3). In the
future, these results might be used to build classification systems, e.g., by
choosing higher pixel resolutions, more training samples, richer features,
or more complex classifiers for ‘difficult’ objects, or ‘difficult’ regions on
the view sphere.

Figure 3: Average distance to nearest background patterns for the views
of the elephant model on the view sphere.

Active learning: Our first experiment on pose-invariant discrimination
between two objects showed that the training of view-based classifiers
from 3D models faces two problems: (1) Large training sets which can
break the learning algorithm. (2) The solutions are not sparse, the clas-
sifiers will be slow. Our ‘active learning’ method addresses these two
problems. The basic idea is to find valuable/informative object views in
the low-dimensional rendering space, six-dimensional in our experiments,
and add them to the training set. The method consists of four steps: (1)
Train a classifier on a set of randomly selected samples. (2) Find local
minima of the classifier’s output in the low-dimensional rendering space.
(3) Render images at the local minima and add them to the training set.
(4) Retrain the classifier on the new training set and repeat the procedure
starting from step two. The critical part of the algorithm is step two: the
search for local minima. We computed the classifier’s output on the same
sets of 40,000 views per class that were used in our initial recognition
experiment. We picked the most difficult views from each class as start-
ing points of the Nelder-Mead simplex algorithm to find local minima of
the classifier’s output in the rendering space; some examples of the ini-
tially selected views and the views at the nearby local minima are shown
in fig. 4. The newly rendered views at the local minima were then added
to the existing training set. The results for the bear-vs.-elephant pair are
given in fig. 4. A comparison with the results in fig. 2 clearly shows that
active learning achieves the same EER with significantly smaller train-
ing sets and significantly fewer support vectors than training on a random
selection of views.
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Active Learning, SVM: bear−elephant

 

 

 01400 02626  3.0050
 01700 03214  1.8800
 02000 03805  0.9988
 02300 04393  0.6763
 02600 04976  0.3875
 02900 05550  0.2700
 03200 06114  0.1938
 03500 06654  0.1625

Figure 4: Left: ROC curve for pairwise object recognition with active
learning. The legend contains the number of training samples per class,
the total number of support vectors, and the EER in %. Right: Example
pairs of initial views (top) and views at the nearby local minima (bottom).


