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Optical flow describes the apparent motion observed in a sequence of im-
ages. We present a novel numerical scheme for variational optical flow
calculation that makes no assumption on the analytical form of the em-
ployed optical flow constraint. The scheme works with different smooth-
ness criteria combining local and global methods in a natural way. We use
this framework to formulate an illumination-robust optical flow calcula-
tion method based on normalised mean-shifted cross-correlation.

The variational problem for optical flow calculation is often formu-
lated as finding the displacement function u(x) that minimises a func-
tional of the form

F (u) =
∫

x

(
E(x,u)+

λ

2
(
|∇xu|2 + |∇xv|2

))
, (1)

where E(x,u), x = (x,y), u = (u,v), is a function describing optical con-
straints, while λ is a parameter.

Most of the methods use an iterative solver that improves the optical
flow estimate obtained in a previous step as u → u′, repeating the proce-
dure until a steady state is reached. For finding u′, at each image point x
we have to solve the two-dimensional root-finding problem

g′−λ (ū−4u′) = 0, (2)

where g′ is ∇uE computed in u′ and ū(x,y) = u(x−1,y)+ u(x,y−1)+
u(x+1,y)+u(x,y+1). g′ is not necessarily linear, but one can choose E
such that it becomes linear. Horn and Schunck [1] proposed

EHS =
1
2
(
It +uIx + vIy

)2 =
1
2
(
It +u∇xI

)2
, (3)

where I(x, t) is the image brightness. Minimising EHS approximates the
brightness constancy assumption. Solving Eq. (2) then results in

u′ = A−1(
λ ū− g̃

)
, (4)

where g̃ = It∇xI and A = H + 4λ I. Here the matrix H = Hαβ = Iα Iβ ,
α,β ∈ {x,y}, is formed by brightness derivatives, while I is a unit matrix.

Our scheme is similar to the Horn-Schunck scheme, however, the
root-finding problem formulated in Eq. (2) is solved with Newton’s method,
while E is calculated only for integer-valued velocities and bicubic inter-
polation is used to find its first- and second-order derivatives.

For this, we consider u(0,0) = buc, v(0,0) = bvc and its integer-valued
neighbourhood as illustrated in Fig. 1. At given x, we calculate the values
of E for u(i, j), E(i, j)

u = E
(
x,u(i, j)), as well as the approximate values of

the first-order derivatives Eu, Ev and the cross-derivative Euv.
After computing the derivatives for all i, j ∈ {0,1}, we can calculate

the bicubic interpolation that approximates E and estimate the first- and
second-order derivatives of E at any u in the cell delimited by the velocity
points (0,0), (0,1), (1,0), and (1,1). (See Fig. 1.)

As the bicubic interpolation maintains the continuity of first-order
derivatives across cell boundaries, we can solve the non-linear root finding
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Figure 1: Integer-valued velocity grid and step tolerance.
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Figure 2: STREET and OFFICE test images with illumination changes.

problem given in Eq. (2) with Newton’s method. Introducing the notations
g = ∇uE and H = Eυν , where υ ,ν ∈ {u,v}, we obtain the fixed-point
equation

u′ = A−1(
λ ū−g+Hu

)
, (5)

where A = H+4λ I.
If the gradients are too steep, typically for regions where intensity

changes cannot be modelled with optical flow, numerical instability may
develop. To overcome this, we introduce a step tolerance and clip u′ to
the corresponding tolerance region.

The proposed scheme can be extended to multiple image components
Im such as RGB, the gradients Ix, Iy, the Laplacian ∆I, or the spherical
colour coordinates ρ , θ , φ [2]. In our experimental study, we compare
different components and two metrics, cross-correlation and L1, on stan-
dard test images with artificial brightness and colour illumination changes
(effects) introduced. It is shown that using cross-correlation in a small
window improves robustness to both kinds of illumination changes.

STREET OFFICE
effect CC L1
none 5.44◦ 5.38◦

bright. 5.48◦ 14.38◦

colour 5.43◦ 7.63◦

effect CC L1
none 5.56◦ 7.22◦

bright. 5.91◦ 17.45◦

colour 5.64◦ 11.95◦

Table 1: Average angular errors for R,G,B.

STREET OFFICE
effect CC L1
none 5.37◦ 5.45◦

bright. 5.37◦ 5.92◦

colour 5.35◦ 7.84◦

effect CC L1
none 5.53◦ 8.16◦

bright. 5.90◦ 8.45◦

colour 6.39◦ 10.93◦

Table 2: Average angular errors for ρ,θ ,φ .

STREET OFFICE
effect CC L1
none 4.81◦ 5.25◦

bright. 4.82◦ 5.97◦

colour 4.82◦ 5.19◦

effect CC L1
none 5.02◦ 7.09◦

bright. 5.00◦ 8.80◦

colour 5.21◦ 6.92◦

Table 3: Average angular errors for R,G,B, Ix, Iy.
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