An implicit non-linear numerical scheme for illumination-robust variational optical flow
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Optical flow describes the apparent motion observed in a sequence of im-
ages. We present a novel numerical scheme for variational optical flow
calculation that makes no assumption on the analytical form of the em-
ployed optical flow constraint. The scheme works with different smooth-
ness criteria combining local and global methods in a natural way. We use
this framework to formulate an illumination-robust optical flow calcula-
tion method based on normalised mean-shifted cross-correlation.

The variational problem for optical flow calculation is often formu-
lated as finding the displacement function u(x) that minimises a func-
tional of the form

PO A 2 2

Fw = [ (Ecw+ 5 (al + Vo)), M)
where E(x,u), X = (x,y), u= (u,v), is a function describing optical con-
straints, while A is a parameter.

Most of the methods use an iterative solver that improves the optical
flow estimate obtained in a previous step as u — u’, repeating the proce-
dure until a steady state is reached. For finding u’, at each image point x
we have to solve the two-dimensional root-finding problem

g —Aa—4u') =0, @)
where g’ is VyE computed in ' and @(x,y) = u(x—1,y) +a(x,y — 1) +
u(x+1,y) +u(x,y+1). g is not necessarily linear, but one can choose E
such that it becomes linear. Horn and Schunck [1] proposed

(I +uvsl)?, 3)

Ens = %(It Ful+vI)* = %
where I(x,7) is the image brightness. Minimising Eyg approximates the
brightness constancy assumption. Solving Eq. (2) then results in
v=A"(a-g), )
where § = I;VxI and A = H-+4A1. Here the matrix H = Hyp = lalg,
o, B € {x,y}, is formed by brightness derivatives, while I is a unit matrix.

Our scheme is similar to the Horn-Schunck scheme, however, the
root-finding problem formulated in Eq. (2) is solved with Newton’s method,
while E is calculated only for integer-valued velocities and bicubic inter-
polation is used to find its first- and second-order derivatives.

For this, we consider u(%0) = |4, v(®9) = || and its integer-valued
neighbourhood as illustrated in Fig. 1. At given x, we calculate the values
of E for ui), B = E (x,ul"))), as well as the approximate values of
the first-order derivatives E,,, E, and the cross-derivative E,, .

After computing the derivatives for all i, j € {0, 1}, we can calculate
the bicubic interpolation that approximates £ and estimate the first- and
second-order derivatives of E at any u in the cell delimited by the velocity
points (0,0), (0,1), (1,0), and (1,1). (See Fig. 1.)

As the bicubic interpolation maintains the continuity of first-order
derivatives across cell boundaries, we can solve the non-linear root finding
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Figure 1: Integer-valued velocity grid and step tolerance.
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Figure 2: STREET and OFFICE test images with illumination changes.

problem given in Eq. (2) with Newton’s method. Introducing the notations
g = VyE and H = Eyy, where v,V € {u,v}, we obtain the fixed-point
equation
uv=A"'"(la-g+Hu), 5)

where A = H+4AL

If the gradients are too steep, typically for regions where intensity
changes cannot be modelled with optical flow, numerical instability may
develop. To overcome this, we introduce a step tolerance and clip u’ to
the corresponding tolerance region.

The proposed scheme can be extended to multiple image components
I such as RGB, the gradients Iy,1,, the Laplacian A/, or the spherical
colour coordinates p, 6, ¢ [2]. In our experimental study, we compare
different components and two metrics, cross-correlation and L, on stan-
dard test images with artificial brightness and colour illumination changes
(effects) introduced. It is shown that using cross-correlation in a small
window improves robustness to both kinds of illumination changes.

STREET OFFICE
effect CC Ly effect CC Ly
none 5.44° 5.38° none 5.56° 7.22°
bright. | 5.48° | 14.38° bright. | 5.91° | 17.45°
colour | 5.43° 7.63° colour | 5.64° | 11.95°
Table 1: Average angular errors for R, G, B.
STREET OFFICE
effect CC Ly effect CC Ly
none 5.37° | 5.45° none 5.53° 8.16°
bright. | 5.37° | 5.92° bright. | 5.90° 8.45°
colour | 5.35° | 7.84° colour | 6.39° | 10.93°
Table 2: Average angular errors for p, 0, ¢.
STREET OFFICE
effect CC Ly effect CC Ly
none 4.81° | 5.25° none 5.02° | 7.09°
bright. | 4.82° | 5.97° bright. | 5.00° | 8.80°
colour | 4.82° | 5.19° colour | 5.21° | 6.92°

Table 3: Average angular errors for R, G, B, Iy, 1.
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