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Abstract

In this paper, a novel framework for visual tracking of human body parts is
introduced. The presented approach demonstrates the feasibility of recover-
ing human poses with data from a single uncalibrated camera using a limb
tracking system based on a 2D articulated model. It is constrained only by
biomechanical knowledge about human bipedal motion, instead on relying
on constraints linked to a specific activity or camera view. These character-
istics make our approach suitable for real visual surveillance applications.
Experiments on HumanEva I & II datasets demonstrate the effectiveness of
our method on tracking human lower body parts. Moreover, a detail compar-
ison with current tracking methods is presented.

1 Introduction
Human motion modelling is one of the most active areas in computer vision. It can be
defined as the ability to estimate, at each frame of a video sequence, the position of
each joint of a human figure which is represented by an articulated model. Because of
the high dimensional space of human motion, tracking methods based on 3D anthropo-
morphic articulated models have proved the most effective [12, 13, 14, 15, 16]. Their
applications include analysis of human activity, entertainment, ambient intelligence and
medical diagnosis to name a few. However, their main drawback is they generally rely
on data capture synchronously by several cameras which have been accurately calibrated.
Therefore, these techniques are unpractical for applications targeting unconstrained envi-
ronments such as video-surveillance. The alternative is usage of tracking methods based
on 2D models which cannot deal by themselves with the intrinsic ambiguity of projected
3D postures, self occlusions and distortions introduced by camera perspective. Therefore,
they are usually restricted to well defined motions and specific camera views; however
these constraints reduce their value in many real applications.

We propose a novel framework based on a set of particle filters to track human body
parts. It relies on a generative approach based on a 2D model constrained only by human
biomechanics. The inclusion of biomechanical knowledge about bipedal motion signifi-
cantly reduces the complexity of the problem. This reduction of complexity is achieved
by the detection of the pivot foot - i.e. the foot which is static during a step - and its
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trajectory during a whole step. Then using our 2D model, tracking of human body parts
is achieved using a set of particle filters [17, 12], which iteratively refine their solution.

In this work, we concentrate our effort on tracking a subject legs since the other body
parts do not benefit from biomechanics constraints. Our results are evaluated against the
HumanEva data set which is becoming the standard for assessing human body tracking
algorithms [5]. After a brief description of the state of the art in human body part tracking,
we present an overview of our methodology. Then we detail the biomechanics constraints
we use and key algorithms. Finally, after presentation and evaluation of our results, con-
clusions are drawn.

2 Related work
Tracking complexity increases exponentially with the number of targets when their mo-
tion is not independent from each other. Articulated models have been shown to be es-
sential tools to handle tracking and detection tasks by reinforcing motion constraints in
either the 2D [21] or 3D space [11] so that motions of subparts are interrelated. Several
approaches have been investigated to alleviate this challenge, such as dynamic program-
ming [1], annealed sampling [18], partitioned sampling [15], eigenspace tracking [10],
hybrid Monte Carlo filtering [19] and bottom-up [6] approaches.

While 3D articulated models are the most suitable to human tracking, they can only be
applied in dedicated environments [12, 13, 14, 15, 16]. Therefore, many 2D models have
been proposed. In [1], tracking of an articulated object is performed in two steps. First,
each limb is tracked separately with a dynamic Markov network. Secondly, positions are
refined by introducing constraints between the different subparts with mean field Monte
Carlo where a set of low dimensional particle filters interact with each other. In [2], robust
tracking in planar patches is performed by incorporating feature weights in RANSAC
and maximum likelihood consensus algorithms. In [3], authors propose a planar-patch
articulated model where the relationship between the model and the image is estimated
using one particle filter for each limb and the constraints between limbs are represented
by interaction potentials. The main drawback of all these 2D models is their usage is
restricted to specific types of motions which are usually linear and seen from a fixed point
of view.

Unlike the previous models whose constraints restrict the type of sequences they can
handle, our approach is based on a constrained 2D model designed to tackle 3D motion
patterns such as changes in the pose of the object with respect to the camera. Therefore,
we will be able to deal with variations in rotation and depth. To achieve this without
introducing strong motion constraints which would restrict the application of our system,
we propose to use some specific knowledge about biomechanics and human gait analysis.

3 Methodology

3.1 General Principle
Human motion is highly multi-modal and this non-gaussianity is amplified in the image
plane by the camera perspective. Therefore, a tracking framework capable of working
with non-linear distribution is required. Since particle filter has been successfully applied



for this purpose [17], we will apply this algorithm within our tracking framework. Our
scheme is based on a set of particle filters to fit a 2D articulated model on each frame of a
video sequence. In addition, we take advantage of a biomechanics constraint inherent in
human bipedal motion: during a ‘step’, one leg pivots around a single point. This allows
us dealing with much more activities than other techniques which rely on training on a
specific activity. Since we are able to detect the position of this point, this constraint is
integrated in an asymmetrical 2D model where the two legs are treated differently. Finally,
model fitting is performed after different trackers have been applied successively.

Initially, a ‘standard’ particle filter process operates to track lower limb locations until
the end of the ‘step’. Due to the high dimensionality of the problem and the ill-conditioned
model, it may not be able to produce satisfactorily tracking. In order to refine the tracking
of the articulated model, two assistant particle filters are then launched in parallel using
information intrinsic to the ‘step’ of interest. The main reason for using two trackers
instead of one is to handle the degradation and potential divergence of tracking over time.

To take advantage of the ‘pivot’ point constraint and trajectory information, we pro-
pose to rely on data captured during a full ‘step’ before completing the tracking task.
While a short delay is introduced - typically around 10 frames (i.e. 0.5s) - in a real time
system, this allows processing a wide range of human activities without loss of accuracy.
Although some actions, such as running or jumping, break the ‘pivot’ constraint during
short periods of time and the ‘pivot’ point can be momentarily occluded, this can be de-
tected and handled without affecting significantly the proposed tracking framework.

3.2 Biomechanics constraints for human motion tracking
Most human motion tracking methods rely on constraints such as specific activity, con-
stant velocity, linear or periodic motion which critically impact on their accuracy and/or
their genericity. Study of human biomechanics, however, reveals that human motion it-
self provides some explicit constraints. In this section, we show they can be utilised to
simplify the task of tracking human body parts. Walking is a very common human ac-
tivity whose many other motions, such as loitering, balancing and dancing, can be seen
as derivatives and where the underlying mechanics of walking can be applied. All these
bipedal motions are based on a series of ‘steps’ defined as one leg ‘swinging’ around a
‘support’ leg whose foot, or ‘pivot’, stays in contact with the ground at any instant [20].

Therefore, the detection of this pivot point from a video sequence permits a significant
reduction of the complexity of the tracking task without important restriction regarding
the types of motions which can be processed by the tracker. Knowledge of the precise
position of the pivot foot also allows using different strategies for tracking either the ‘sup-
port’ or the ‘swinging’ leg, which enhances the power of our 2D model. Moreover, posi-
tions of consecutive striking feet provide some information about the subject’s trajectory
in the image plane which supplies clues regarding the relative camera-subject position.

In addition to the ‘pivot’ foot constraint, the ‘support’ leg has another property: upper
and lower legs are supposed to be aligned during the pivot motion around the static foot.
Therefore, estimate of the locations of the associated knee and hip is refined if they do not
form a straight line with the pivot foot.

In our framework, the static foot is detected using the algorithm proposed in [4]. It
is based on the biomechanics of gait motion. During the strike phase, the foot of the
striking leg stays at the same position for half a gait cycle, whilst the rest of the human



body moves. The pivot foot is detected using a low-level feature: corners produced by the
Harris corner detector. Corners associated to the pedestrian of interest are accumulated
across several frames (i.e. 20 in our implementation). The region where the leg strikes the
ground must have a high density of corners. Although this approach is usually efficient,
motions towards or away from the camera produce many points seen as static on the body.
We deal with this by apply a double filtering process to remove outliers by maintaining
both temporal and spatial coherences of the ‘pivot’ point.

3.3 Multiple particle filter tracking based on 2D articulated model
3.3.1 2D asymmetrical articulated model informed by trajectory information

Our model aims to track simultaneously the global position of the subject in the image
as well as the relative position of the different parts of the limbs. Thus, the tracker state
vector is composed of the image coordinates of the hip points and the parameters which
model the relative motions and positions, such as angles and lengths in the image plane.
In order to introduce the biomechanics constraints, which rely on a relative independence
between both legs, both hip points are employed as references and the angles of both legs
with respect to the hips are included in the state vector. The state vector of each leg is
described by the following equation:

Xleg = [xhip,yhip, ẋhip, ẏhip,θthigh,θleg, θ̇thigh, θ̇leg, lthigh, lleg, l̇thigh, l̇leg] (1)

where x and y are the coordinates in pixels, θ is the angle between a limb and the x axis
and l is the length of the limb (see figure 2a).

Once the ‘support’ leg is estimated, the hip point of the ‘swinging’ leg is constrained
by the distance between the two hips, which is set at a fixed anthropometric value, D0.
Moreover, the two hips points are supposed to share the same y coordinate.

Due to its nature, 2D tracking allows a higher flexibility and simplicity of use and
initialisation than 3D tracking. However, in 2D it is not possible to introduce traditional
constraints, such as motion dynamic or kinematics. Instead we include 3D properties in
the 2D world. In the 3D world, the distance between the hips remains constant over time.
However, when this fixed distance is projected in the camera plane, its value is changed
by two different parameters: the location and the orientation. Whereas the location intro-
duces a factor of scale which is estimated with the global size of the legs, the orientation
distort this distance in a non-linear way which depends on the view point.

Because of the stochastic nature of our tracking algorithm, the exact value of this
distance is not required. Given the poses of the hips at the beginning and the end of a
step, values of the hips between these two frames are estimated. In fact, the distance is
correlated to the angle of the step trajectory in non-linear manner as shown on Figure 1a.
We approximate this correlation function using a function which models a S-curve.

D(θ) = D0 · 1− e−αθ

1+ e−αθ (2)

where D0 is the maximum size of the hip distance with respect to the size of the leg (in our
implementation, it is half the value of the sum of the thigh widths), θ is the angle between
the trajectory and the x axis in the image plane and α is an empirical factor which controls
the speed of the curve descent.



Therefore, we infer hip distances by estimating at each frame the trajectory angle.
This is performed by fitting cubic splines to all pivot points (see figure 1a,b).

(a) (b)

Figure 1: (a) Interpolated trajectory (blue dots) of the pivot points (red and green dots).
(b) Correspondences during a turn between the hip distances in a zenithal view and in the
image plane.

3.3.2 Multiple particle filter tracking

One of the most challenging problems of 2D tracking is to deal with the perspective effect
which amplifies changes in trajectories and, therefore, can create major variations in the
target’s size. Therefore, the usage of a simple first order models does not allow repre-
senting size dynamics adequately. Since our tracking framework is based on a full ‘step’
where heel strike positions are known, the final position of a step is partially reinitialised.
Consequently, information is available to define the trajectory of the target during each
step. Moreover, new tracking constraints are derived regarding maximum and minimum
apparent limb sizes and distances between the hip points during the step. This last con-
straint provides a reference point for the ‘swing’ leg similarly as the pivot point restricts
the location of the ‘support’ leg. These new constraints, which were not initially avail-
able when the standard tracker operated, would reduce significantly the complexity of the
tracking problem. Furthermore, when using a particle filter based tracker, the probability
of divergence increases after each prediction: the closer a frame is to the initialisation
frame the more accurate is the estimation is likely to be.

In order to take advantages of these new constraints and tackle this inherent tracker
weakness, we propose that once the standard tracker has processed a full ’step’, two new
trackers should be launched in parallel (see Figure 2b). These trackers have the same con-
figuration and dynamical models enhanced by the constraints extracted from the output
of the standard tracker. Whereas the ‘forward’ tracker starts from the first frame of the
step, the ‘backward’ tracker begins at the last frame and tracks targets backwards. Con-
sequently, for each frame two estimates are available. However, since estimate reliability
depends on its distance from the initialisation frame, a criterion is designed to decide at
which frame the backward tracker is more likely to provide more accurate estimates than
the forward tracker. Although the particle filter does not provide for each frame an actual
estimation, a weighted mean estimation is extracted combining all the hypotheses. By
using this temporal estimation, the measurement of its likelihood function is obtained.



(a) (b)

Figure 2: (a) 2D articulated model. (b) Multi tracker framework.

Therefore, comparison between the forward and backward tracking is made, and a stop-
ping criterion is established. The reduction of reliability is introduced as an exponential
decreasing function that multiplies the estimation likelihood.

In our framework, the likelihood function relies on colour and edge features. Since we
assume these features are independent from each other, we can combine them to obtain
the observation probability:

p(zt |xt) = p(z1
t |xt) · p(z2

t |xt) (3)

where z1
t and z2

t are the colour and edge observations respectively.
Colour features are obtained by sampling each region by a grid and expressing the

colour information by RGB values subsampled to 4 bits to filter out noise and small
variations. The colour density is measured by comparing the colour feature of each region
of the articulated model with its corresponding colour model. It is evaluated by estimating
the Bhattacharyya coefficient between their histograms.

p(z1
t |xt) = ∏

r∈Xt

(
H

∑
h=1

√
r(h) ·q(h))αc (4)

where r is a body part from the articulated model, H are all the histogram bins, r(h) is
the current histogram, q(h) is the reference model and αc > 0 is an empirical factor to
increase the discriminative power of the feature.

A gradient detector is used to detect edges, and the result is thresholded to eliminate
spurious edges. The Canny algorithm is applied for this purpose. The result is smoothed
with a Gaussian filter and normalised between 0 and 1. The resulting density image Pe

assigns a value to each pixel according to its proximity to an edge using an adaptation of
the Euclidean distance transform.

p(z2
t |xt) = ∏

r∈Xt

1
N

N

∑
i=1

Pe(I, i)αe (5)

where r represents each of the regions which compose the articulated model, N are all the
pixels which compose the region and αe > 0 is an empirical factor similar to αc.



4 Results
The algorithm has been tested over the HumanEva (HE) dataset I and II. As motion
capture and video data were collected synchronously, motion capture data provides the
groundtruth. Since cameras are calibrated, ground truth data points can be projected on
the 2D sequences in order to evaluate quantitatively 2D pose estimates. A standard set
of error metrics [5] is defined that can be used for evaluation of both pose estimations
and tracking algorithms. To ensure fair comparison between algorithms that use different
numbers of parts, only predicted joints are included in the error metric.

The algorithm has been tested with 3 sequences from these datasets: S2 Walking 1 C1,
S2 Combo 1 C1 from HE I and S2 Combo 1 C1 from HE II. Since the latest sequence
is especially long, we divided it in two parts: part 1, which is at the beginning of the
sequence and corresponds to walking, and part 2, which is at the end and shows some
balancing, see Table 1 for details. These sequences were chosen to include a variety of
movements (walking a complete circle and balancing) seen from different points of view
and happening mainly outside the camera plane (see Figures 4 and 5). Although experi-
ments were performed with a number of particles in the Particle Filter ranging from 200
to 500, their number did not affect tracking accuracy.

The pivot point detector can produce erroneous locations: the average error is 20.4
pixels. Therefore, tracking can be affected negatively by this initial process. To analyse
independently the tracking algorithm, results are also provided where manual annotation
was used to define pivot points (see Table 1). The mean error is around 15 pixels. It
increases to 18 pixel when tracking is combined with automatic pivot point detection.

Figure 3 depicts the error of our tracking framework compared with a version using
only the standard tracker. Not only does our system perform significantly better, but this
chart also highlights one of the strength of our proposition: tracking is able to recover
from serious divergence because of the partial reinitialisation provided by detection of
pivot points and trajectory constraints. Although the tracker diverges around frame 200,
where limbs reach their apparent maximum size and are self-occluded, legs are accurately
labelled on frames 219 and 242 (see Figures 3 and 4).

Table 1: Numerical results with manual and automatic pivot point detection

Manual pivot point Automatic pivot point
Sequence Frames Absolute Standard Absolute Standard

Mean Error Deviation Mean Error Deviation
(C1 camera) [in pixels] [in pixels] [in pixels] [in pixels]

S2 Walking1, HE I [6, 418] 17.1 8.7 25.9 10.9
S2 Combo1, HE I [1661, 2054] 9.3 5.8 9.1 6.2
S2 Combo1, HE II [1, 307] 25.1 12.4 25.8 12.3
S2 Combo1, HE II [747, 1202] 9.7 2.3 10.0 3.1

Total 1570 14.6 9.9 17.6 14.7

Table 2 shows how our results compare with other techniques used to recover either
2D or 3D poses from the HumanEva data sets. When authors only provided mean errors
for 3D poses, they were converted in pixels using approximate relationships between pixel



Table 2: Comparison with state of the art

Algorithm Dataset Pix. error Constraints Training Initialised

Manual pivot HE I 13.2 Bipedal motion No Yes
HE II 15.9 Bipedal motion No Yes

Automatic pivot HE I 17.5 Bipedal motion No Yes
HE II 17.7 Bipedal motion No Yes

Lee et al. [10] HE I 5-7* Activity specific & cyclic Yes No

Howe [7, 8] HE I 12.5 Activity specific Yes No
HE II 18.5 Activity specific Yes No

Pope et al. [9] HE I 10-14* View and activity specific Yes No
HE II 17-20* View and activity specific Yes No

Husz et al. [11] HE I 33 Single calibrated camera Yes Yes
HE I 14.8 Multiple calibrated cameras Yes Yes
HE II 19 Multiple calibrated cameras Yes Yes

* Pixel error estimated from 3D error

Figure 3: Tracking error for each frame of the part 1 of S2 Combo 1 (C1) (HE II) se-
quence. Green and read lines are respectively the manual and automatic detection of the
begining/end of a ’step’. Magenta line is the error using only the standard tracker. Blue
line shows the error using the whole framework.

and object lengths for each of the HumanEva datasets.
Most methods perform similarly on the HumanEva datasets, i.e. a pixel error in the

12-15 and 17-20 ranges for respectively HE I and HE II. The only exception is Lee and
Elgammal’s [10] work which relies on a manifold whose topology is learned using a
training set. Their technique performs extremely well: joint mean accuracy is 31 mm, i.e.
5 to 7 pixels. The main drawback of their approach is it relies on a walking scenario or
more generally on cyclic activities that have to be learnt explicitly.

The hierarchical particle filter proposed by Husz et al. [11] relies on a motion model
based on action primitives which predicts the next pose in a stochastic manner. Although
their tracker performs similarly to ours when 2 or more camera sequences are available, its
performances degrade significantly when processing a single sequence. Both Howe [7, 8]
and Poppe et al. [9] present example-based approaches to pose recovery. They use very
different image descriptors, respectively silhouettes and histograms of oriented gradients,
but their results appear to be quite similar. The main drawback of these methods is they
are action specific and therefore they may not be able to track individuals which display



Figure 4: Results for S2 Combo 1 (C1) (HumanEva II) sequence. Frames: 1, 10, 29, 45,
81, 95, 125, 154, 175, 194, 219, 242, 272, 290.

Figure 5: Results for S2 Combo 1 (C1) (HumanEva I) sequence. Frames: 1661, 1730,
1853, 1920, 1967, 2021, 2045, 2073

either unexpected motions or a combination of motions. It is also important to notice that
like many 3D algorithms, Poppe’s assume that the location of the silhouette in the image
is provided by an auxiliary image tracker. Therefore, the results they present do not take
into account the lack of accuracy such a tracker would produce. One strength of our
methodology is that all processing steps are fully integrated. Finally, since our framework
is based on a generative approach, no training phase is required. Thus, our system can
recover human poses of unusual movements as shown in Figure 5.

5 Conclusion and Future Work
This paper introduces a novel framework based on a set of particle filters to track human
body parts from a single camera. The results presented here demonstrate the feasibility
of recovering human pose using a 2D limb tracking system on the basis of articulated



models constrained only by human biomechanics. Not only does the use of a 2D model
reduces the computation complexity of tracking human body parts, but also simplifies the
tracker initialization. The presented approach has been successfully applied to walking
and balancing sequences which include changes of view in the 3D world . Moreover, its
accuracy is comparable to other systems relying on constraints incompatible with most
video surveillance applications. Therefore, our framework yields potential for tracking
human body segments in those applications where motions are generally bipedal.

In future work, we want to tackle the initialisation of our tracker. We will build on the
already existing methods which have been proposed to detect automatically limbs from an
individual either from still or sequence images. In particular, we will focus on bottom up
strategies which have the advantage of not relying on a training stage. We will also extend
our framework so that tracking can be performed when short ‘pivot’ point occlusions and
temporary loss of foot contact, e.g. in running, occur.
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