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Abstract

We present an unsupervised method for learning and redogrubject cate-
gories from unlabeled images. Motivated by the existentéghfly selective,
sparsely ring cells observed in the human medial tempabél(MTL), we
apply a sparse generative model to the outputs of a biolthgfeithful model
of the primate ventral visual system. In our model, a netwafrkonlinear
neurons learns a sparse representation of its inputs thrauginsupervised
expectation-maximization process. In recognition, thisdel is used in a
maximume-likelihood manner to classify unseen images, aadnd units
emerging from learning that respond selectively to speithage categories.
A signi cant advantage of this approach is that there is nech® specify
the number of categories present in the training set. Weeptetassi cation
accuracy using three different evaluation metrics.

1 Introduction

Highly sparse representations of objects in the visualrenment in which individual
neurons display a strong selectivity for only one or a femsti (such as familiar indi-
viduals or landmark buildings) out of perhaps 100 presetaeltest subject have been
observed in the human medial temporal lobe (MTL), a braim arecial to the forma-
tion of new memories [11, 18]. While highly selective for atpaular object or category,
these cells are remarkably insensitive to different priegems (i.e. different poses and
views) of their preferred stimulus. By contrast, neurontghminferotemporal cortex (1T),
immediately earlier in the visual pathway, respond in a miesls sparse manner [14].
A natural question to ask is thus “how do neurons in the MTLrdheir sparse and in-
variant representations from the incoming visual infoiior@” From a machine vision
standpoint, this question can be viewed as a problem in @mgiged image classi cation:
given a set of unlabeled training images, can we design amidig that will group these
images into categories corresponding to those human adrsamould impose? This is
clearly distinct from the more common approach to objeabgedion in which a labeled
training set is used to learn features common to the categbigh can then be used to
classify unlabeled images [1, 4].

Motivated by the neurobiological results, we study the effeof applying a sparse-
coding model to the outputs of a biologically faithful modélthe primate ventral visual



cortex [13, 15]. The sparse-coding model, which itself eyplbiologically plausible
learning operations, is derived from that of Olshausen &drj&0], which they used
to develop a sparse representation of natural images nmkeslhlat observed in primate
visual cortex. We seek to use a similar learning algorithrbudd a representation in
which individual units of our output layer respond in a sélezand invariant manner to
speci ¢ object categories.

1.1 Related Work

Unsupervised image classi cation has only recently beguattract attention in the lit-
erature. Sivic et al. [17] apply techniques from unsupeditpic discovery in text to
“words” derived from SIFT descriptors to discover categerin images. While their ap-
proach s very different from that taken here, the probleey tittempt to solve is the same
(and we evaluate our results on many of the same datasetsmportant distinction is
that they found it important to restrict the number of caté&gpsearched for to the num-
ber truly present in their datasets, while our method is sbtmvarying numbers of input
categories. Fergus, Perona, and Zisserman [4] use an unsgokgenerative learning
algorithm to build representations of particular imageegaties, but only images from
a single category are presented to the model, which is tteedién a category-versus-
background setting. In contrast, our model simultanedeslsns representations for mul-
tiple image categories withowat priori speci cation of the labels (or even the number
of categories present). Weber, Welling, and Perona [19] edst the unsupervised cate-
gorization problem as emergent population coding, butavuitlithe sparseness constraint
that is key to our results. Serre, Wolf, and Poggio [16] depetl the underlying vision
system model we use here, and they show that the featuresatgshare suf cient to
classify our input categories with high accuracy (usingesuised classi er).

Sparse coding as a computational tool has attracted a grabbfattention in recent
years, both in the context of vision and elsewhere. Olshraard Field developed the al-
gorithm we apply here and showed that, when applied to natnese patches, it gener-
ates a code much like that observed in simple cells in primiaal cortex [9, 10]. Hinton
and Ghahramani [6] also cast sparse representation in aajseanodeling framework,
but as with Olshausen and Field they work directly at the ienlegel. Sparse coding is
closely related tdhdependent Components Analy&F which has been used to generate
natural image codes similar to those obtained from spamdieg@3]. Li et al. [7] discuss
the use of sparse representation for blind source separatiduding the notion that the
number of sources (in our nomenclature, categories) netdabergpeci ed, but they do not
address the application we present here. Mutch and Lowargidve the performance
of the underlying vision system model we use here, in pargisparsi cation to en-
hance selectivity. Ranzato et al. [12] take an energy-bapptbach to the unsupervised
learning of sparse representations of natural images aeg bliscuss its extension to a
hierarchical model. Both of these efforts are at a much Ideszl of the hierarchy and
so do not address categorization.

2 Approach

We rst generate an invariant feature-based represemtatiour images (analogous to
that found in IT) using the hierarchical feedforward modeasloject recognition described



by Serre et al. [15] and available lattp://cbcl.mit.edu . The output of this stage -
applied to many images from several different image caiegetis then sent into a sparse
coding model (modi ed from [10]). This network attempts ttentify sparse structure in
its inputs via unsupervised learning on sample input dataeviluate performance we
examine the selectivity of the trained network to unseergesdrom the same categories
as the training data.

2.1 Input Processing

All images used in this investigation were taken from thet€dl-256 database of images
from 256 categories [5]. Images were resized (using MATLg\BIresize with nearest-
neighbor interpolation) so that the smaller dimension vw2&dixels while preserving the
aspect ratio. The outputs of the C2b and C3 layers of the Mmoaessing model [15]
were computed using a feature set derived from training @dhriz@ural images (no new
features were learned - this investigation used the ltaduded in the standard distri-
bution of this model). There were 1000 units in each of thagers, for a total of 2000
outputs. These outputs were then normalized so that eagutounit's responses had
zero mean and unit variance across the input set for a giveeriement. These normal-
ized outputs were used as inputs to the sparse coding mosteiloed below.

2.2 Sparse Coding

We seek to build a generative mod&bf the inputsu 2 R" (here,n = 2000) to our model
with the assumption that there exists some sparse set of€a@sR™ (with m  n)
underlying the observed data. In our caseltlage the responses of the underlying vision
system model to the input images, while each elemeaf v will come to represent an
image category. In general, we wish to nd probability deypdunctions f(vjG) and
f(ujv; G) such that the distribution of generated inputs
z
f(uG)=f(uvG)f(vG) 1)
v

closely matched (u), the distribution of inputs observed in the training datanc®
such distributions have been found, we can attribute catasggputs by a determinis-
tic maximum-likelihood process, or

v(u) = arg nQIaxf (Vju; G): (2)

Following the approach of Olshausen & Field [10], we can use framework to
search for a sparse code for our inputs. First, we assumattses underlying the inputs
are sparse and independent, setting

y
f(VG) 1 O exp(S(w)); 3)

i=1

wherev; 2 R is theit" element ofv andS(v;) is de ned such that the resulting distribution
is sparse. For simplicity we omit the proportionality cargtrequired to make this dis-
tribution integrate to 1. In [10], where this strategy wasdifo develop a V1-like sparse
code for natural images, the sparse p&dollowed a Cauchy distribution. Because we



seek to develop units that respond in a more-or-less birzeatyidn (i.e. most responses
are close to 0 or 1), we instead use a weighted sum of two Gansssiith variances 2,
one centered at 0 with weight 1t and the other at 1 with weight

Second, we assume that the distribution of inputs given ae#@siGaussian with a
mean given by a linear function of the causes, thdfig] = Gv for someG2 R" ™
and diagonal covariance matOV[u] = / |. The columns of are thus basis functions
for representing the inputs We further place a zero-mean Gaussian prior distribution
with varianceg? on the elementg;; of G to avoid an extra normalization step required in
earlier work.

Our generative modéb is now parameterized by the mati& The function to be
maximized with respect tG is the average log-likelihood of the data within the model,

F (W(u);G)

An f(v(u); u; G)i N
g g
aad

i=1j=1

L GV(u)k? + 2 S(vi(u)) 1
2l a =vilw) - o4
The rstterminF penalizes a mismatch between the true inpand the modeled input
GV(u), the second term rewards responses that are likely aceptdithe sparse prior,
and the third term penalizes large weight€&in

We optimize this function via expectation maximization. the E phase, for each
inputu we seek to compute the most likely cawge) (i.e. the argmax of ). Performing
gradient ascent oR with respect tos we obtain the differential equation

v= %GT(U GV + S{v) (4)

where the vector-valued functic@v) is shorthand foB evaluated on each and<’is the
derivative ofSwith respect tor. This system can be implemented as a two-layer recurrent
neural network with nonlinear dynamics in the output layigeg by S’ This stage of the
optimization computes the set of basis functions that bestesent the input, subject to
the sparseness constraint imposedby

In the M phase, we compute the optin@&for the curren¥/(u). Taking the derivative
of F with respect tdG, setting equal to zero, and solving fBrwe obtain the update rule

1
G!'h u/i Ial+h/vTi : (5)

This rule yields the global optimum f@ givenv(u) and so lets us take large steps toward
the optimum ofF in the M phase. This in turn leads to much faster convergemme t
the incremental update used in previous work [9, 10]. If, éesr, we wish to perform
on-line learning in which images are presented one at a tgrajient ascent yields a
Hebbian-with-decay update rule.

3 Classi cation Experiments

We performed several experiments with this model. In alesate number of outputs
from the C2b and C3 layers of the visual system model [15] -thnd the input to the



sparse learning network - was= 2000, and the number of output units was 10. The
matrix G was initialized with uniformly distributed random weightsetween 0:5 and
0:5. Equation 4 was simulated in MATLAB for suf cient time toaeh equilibrium with
the additional constraint that all responggdse nonnegative (using MATLAB's “NonNeg-
ative” odeset property) and parametets= 10,t = 0:05, ands? = 0:04. The weight
penalty wagg= 100. In each experiment we used the batch update rule (eqad3ea
minated the optimization when the average change in thehissgyy was less than 1%.
Except for experiment (D), for which fewer images were afa#, we used 40 random
images from each category for training and reserved 40rdiftdmages for testing. After
training, the recognition model (eq. 4) was run on the noegting images.
We performed the following four experiments:

(A) Three object categories.The model was trained and tested on images of motorbikes,
airplanes, and faces. This is directly comparable to erpant (C) of [17].

(B) Four object categories.We added a fourth category (cars) to the training set from
experiment (A). This is similar to experiment (D) of [17],a@pt that we used side- rather
than rear-views of cars.

(C) Four object categories. As the images from experiment (B) are relatively easy to
classify (a supervised classi er operating on the sametmpan perform this task at near
100% accuracy), we performed the same experiment with faremif cult categories:
blimps, elephants, ketches (a type of sailboat), and letspar

(D) Five individuals. We sorted the face images from the Caltech 256 database into
categories consisting of images of the same individual. Méa fpresented images of 5

of these individuals. We presented 10 images of each ingiith the training stage,
reserving 10 different images of each individual for tegtin

4 Results

We ran each experiment 10 times with different random irdtiaditions forG. All model
parameters were identical between the four experimentadiustment was required to
account for different number or type of input categoriesveein experiments.

4.1 Response Pro les

We here focus on describing the response pro les of the dutpits from a typical run of
experiment (B); results from the other trials and experiteevere qualitatively similar.
Figure 1 depicts the responses of two of the selective uindm(the same session) that
emerged in training. For each unit this gure shows 20 of thémages that evoked the
strongest responses (every other response is omitteddiayglas well as a histogram of
all responses. The ROC curve for each unit treated as a elafgsiits preferred category
is inset in the histogram, along with the ROC curve for thet Ipescipal component
for that category for comparison. We see from these gured tategory tuning has
spontaneously emerged from the learning process.
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Figure 1: Responses of two selective units after the unsigeet category learning. (a,c):
images that evoked the top responses, with the activati@h &#ove each image. Every
2"d image omitted for clarity. (b,d): response histogramaxis is the activation levey-
axis is the number of test images (160 total) evoking a respanhthat level. Responses to
preferred category in black; responses to all other imag@gite. Insets: ROC curves.
Solid line is ROC curve for selected unit, dashed line is R@@se for best principal
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component. ROC equal-error accuracies were 100% and 88%.



4.2 Classi cation Accuracy

Given that we use a purely unsupervised training processttat our model is free to

identify fewer or more categories than are present in theiirg set, there are several
possibilities for evaluating the classi cation accuradytiis system. We consider three
metrics here, two of which are weakly supervised as theyireqs to decide what cate-
gory each unit is selective for, and one of which is fully upstvised:

Metric 1: Single-category classi er. We consider each unit individually as a classi er
for its most selective category. The accuracy gure we ushégeceiver-operating char-
acteristic (ROC) equal error rate (i.e. p(true positive}p(flalse positive)) testing against
the other categories. Chance level in this case is 50%. Tlécrsethe average accuracy
of our best classi er for each category.

Metric 2: Weakly supervised classi er. We use all selective units together to classify
each input image into one of the input categories. To do sostananually assign
to each unit a category for which it is most selective as eefso multiple units could
be assigned the same category). We then classify each incagedang to which unit
responded the most strongly. The accuracy is then the pagenof testing images cor-
rectly classi ed, and the chance level is one over the nurobeategories.

Metric 3: Unsupervised classi er. In the fully unsupervised setting we rely on the out-
put units to both de ne the categories and assign imagesto tfeach image is assigned
to a putative category based on which output unit respontedibst strongly. We then
form a confusion matrix in which elemefit j) is the percentage of images from input
categoryj assigned to output categdrgind rearrange this matrix to maximize the average
of the diagonal elements, thereby picking the output categthat best correspond to the
input categories. This average is then the classi catiaueacy, and chance level is one
over the number of output units (in this case 10).

Note that each of these metrics says something differenitabhe behavior of the
network, and none of them by itself describes exactly thesspanvariant selectivity that
is our goal. Metric 1 quanti es how selective individual tsiare for particular cate-
gories, but disregards the separation between on- andesffonses. Metric 3 quanti es
how precisely the categories discovered by the networkespond to those we de ned,
but a network that divides one or more categories into selgoaies would score poorly
here despite qualitatively good performance. Metric 2védiies this issue, but could dis-
regard excessive subcategorization. Hence, sparsejanvagpresentation of the input
categories is only captured by good scores according thraétmetrics.

The results of each experiment as measured by these meteicad over 10 trials
are summarized in Table 1. As a baseline for comparison, seeelaluated the perfor-
mance of Principal Components Analysis (PCA) applied tcstimae inputs as our sparse
coding network against these three metrics. As we had 18 imithe output layer of
the sparse coding network, we used the top 10 principal coemnus for this comparison.
We also found the best performance we could achieve usingengsed SVM classi er
applied to the same inputs, which provides a reasonabler inggpsd on achievable per-
formance and an objective measure of task dif culty. Formget we report the average
accuracy of a binary SVM classi er for each category verdiesdthers, while for metric



Ex Metric 1 Metric 2 Metric 3

SN PCA SYM <c¢ch| SN PCA <ch| SN PCA SVM ch
91.7 69.2 98.1 50.090.6 55.0 333 64.0 37.5 96.7 10.(
89.8 719 974 50.082.6 469 250 66.1 40.6 96.9 10.(
77.0 69.2 88.1 50.063.8 475 250 414 36.3 819 10.(
948 850 98.0 50.083.6 620 20.0 75.0 70.0 100.0 10.(

O| 0| m| >

Table 1: Classi cation accuracy computed using differeetmes averaged over 10 trials
with random initial conditions. In all cases unseen imagesawused for testing. For each
metric we report the classi cation accuracy (as a percexjtéay the sparse network (SN)
and for PCA applied to the same inputs, as well as chance |[EBeelmetrics 1 and 3 we

also provide the accuracy of a supervised SVM classi er iggjto the same inputs.

3 we report the accuracy of a multi-way SVM.

One surprising aspect of these results was the excellefdrpgnce in experiment
(D), the 5-way face discrimination task which we initialiyeid as a presumably more
dif cult test of our methods. While the distinction betwedifferent faces is clearly more
subtle than the distinction between categories, theress lass within-category varia-
tion in the face images than in the images from other categpsio different images of
the same individual are likely to be tightly clustered intfea space. From this we see
that the within-class homogeneity drives classi catios@acy as much as the inter-class
separation. Experiment (D) also highlights the importaoicthe statistics of the input
set to the representation learned. In experiments (A) afdféBes were present often
in the inputs, but no particular individual was present oftén this case we obtain a
representation for “face,” but no individuation within thdass. In experiment (D), par-
ticular individuals were present often, giving the netwerlough information to identify
multiple individuals and represent them separately.

The seemingly poor results from experiment (C) still oceuthie context of units that
show very clean selectivity for each category. Howevergchecase the units responded
strongly only to asubseDf the category in question. Figure 2 gives an example of auch
unit which responded selectively to some but not all of thelkémages.

5 Conclusions and Future Work

We here demonstrated a system that is able to group unlaimeégpes into appropriate
categories through unsupervised learning on image feattlités model has at its core the
notion that underlying the high-dimensional vector of éeas from the model is a sparse
set of causes, and that these causes can be uncovered bizgfimmsparse generative
model of the inputs. This model performs quite well on benataimage classi cation
tasks despite being both entirely unsupervised and metivatimarily by the relevant
biology rather than by optimizing machine vision performanThis model has the further
important feature that it is not necessary to speaifyriori the number of categories to
search for, except of course to ensure that enough outpist armg available to represent
all the input categories.

Many open questions remain. The simplest is how well thisrégue scales to larger
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Figure 2: Responses of a ketch unit from experiment (C). ifapges that evoked the
top responses, with the activation level above each imagery' image omitted for
clarity. (b): response histogranx-axis is the activation levely-axis is the number of
test images (160 total) evoking a response at that levelpdtees to ketches in black;
responses to all other images in white. Inset: ROC curvaed 8o is ROC curve for this
unit, dashed line is ROC curve for best principal compon®8®QC equal error accuracy
with respect to all ketches was 85%.

numbers of categories and categories that resemble ongeamaore closely or are more
diverse. It remains to be seen whether the feature set ughisimvestigation is suf -
cient to discover more (or more similar) categories in thisupervised setting, or if the
underlying visual system model itself is sophisticatedwgioto scale regardless of the
number of features used. Our immediate future work will stigate this scalability.
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