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Abstract

A probabilistic method is proposed for segmentation of multiple objects that
overlap or are in close proximity to one another. A likelihood function is
formulated that explicitly models overlapping object appearance. Priors on
global appearance and geometry (including shape) are learned from example
images. Markov chain Monte Carlo methods are used to obtain samples from
a posterior distribution over model parameters from which expectations can
be estimated. The method is described in detail for the problem of segment-
ing femur and tibia in x-ray images. The result is a probabilistic segmentation
that quantifies uncertainty so that measurements such as joint space can be
made with associated uncertainty.

1 Introduction
The aim of this paper is to outline a probabilistic model-based segmentation method for
multiple, possibly overlapping, objects and to make explicit the uncertainty in the seg-
mentation so obtained. The method explicitly handles objects that overlap, or whose
appearance models overlap, in the image. Such cases are not handled in methods based
on active contours [6], active shape models or active appearance models [3], for example.
The method is applied here to analysis of radiographic images where overlapping objects
result in pixel values that depend on multiple objects. A somewhat related approach for
segmenting multiple opaque objects was reported by Li [7] who posed the object match-
ing as a labeling problem which was solved by a MAP estimation.

Segmentation of objects is often only an intermediate result. Consider for example
medical image analysis tasks involving measuring the size of anatomical structures. Most
standard segmentation algorithms result in a single solution without any information as
to the confidence in this solution. No information about uncertainty is propagated to the
subsequent size estimation step. Furthermore, anatomical structures almost inevitably
overlap. In medical applications, especially, it is desirable to have an indication of the cer-
tainty of a measurement and to cope with structures that overlap or are in close proximity.
The proposed method is evaluated for the segmentation of the knee joint for the purpose
of the measurement of joint space which is an important biomarker for the assessment of
osteoarthritis [10].
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Figure 1: Regions in overlapping objects A and B

2 Probabilistic Segmentation
The general task of segmenting modelled objects from an image can be described in the
Bayesian framework as that of infering the conditional distribution P(M|I,I,S) which is
the probability of the model parameters, M, given a test image I, a set of training images, I,
and their annotations, S. Each object can be described by its geometry and appearance in
the image and, more specifically, in terms of shape parameters, S, geometric (non-shape)
parameters, G, global appearance parameters, Ag, and local appearance parameters, Al .
Using Bayes’ rule and assuming P(I) is fixed:

P(M|I) ∝ p(I|M)P(M)
= p(I|G,S,Ag,Al)P(G)P(S)P(Ag)P(Al) (1)

Assuming pixel-wise conditional independence, the likelihood factors as

p(I|G,S,Ag,Al) =
N

∏
n=1

∏
x∈Ωn

pn(I(x)|G,S,Ag,Al) (2)

where the likelihood is modelled as not depending on pixels outside a finite image sup-

port Ω =
N⋃

n=1
Ωn ⊂ R2 consisting of N non-intersecting regions. In general, different

likelihood functions will be used at different locations with respect to the object. Fur-
thermore, likelihood functions for a region in which object appearances overlap can be
modelled by combining object-specific likelihood factors appropriately. An object di-
vides its image into distinct regions. Overlapping objects result in further distinct re-
gions. Figure 1 illustrates an example in which two convex objects, A and B, over-
lap. Their appearance models have finite support, in this case an interior region and
an exterior region within a fixed distance of the object boundary. Eight regions arise,
each potentially requiring different forms of likelihood functions. These regions are
{Ωin

A ,Ωin
B ,Ωout

A ,Ωout
B ,Ωin,in

A,B ,Ωin,out
A,B ,Ωout,in

A,B ,Ωout,out
A,B }, denoting inside A, inside B, outside

A, outside B, inside both, inside A but outside B, outside A but inside B, and outside both,
respectively. Note that regions are not always contiguous. The manner in which their
likelihood functions are computed depends on the actual application.

3 Modelling Knee Radiographs
The method is now specified fully for the case of segmentation of multiple bones from
plane radiographs. We focus specifically on femur and tibia, segmentations of which are
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Figure 2: Geometric model parameters
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Figure 3: Mask and warp ω : x 7→ (α,δ )

important in the assessment of osteoarthritis via measurement of joint space.
Point distribution models were used to model shape deformations in each bone’s con-

tours [3]. Specifically, each normalised femoral shape x was represented using shape
parameters S f by x ≈ x + ΦΛ

1
2 S f with x being the mean shape, Φ the eigenvectors and

Λ
1
2 the square roots of the corresponding eigenvalues of the covariance matrix, all learned

from training data. Shape parameters, St , for tibia were defined analogously. Further geo-
metric parameters were global parameters Gg = {tx, ty,θ ,s f } where (tx, ty) is the midpoint
of the line segment connecting the centres of mass of the femur and tibia, θ is the rotation
of this line segment, and s f is scale, and local parameters Gl = {d,st ,θ f ,θt} where d is
the separation of the bones, st is the scale of the tibia relative to the femur, and θ f and θt
are local rotations of the femur and tibia (see Figure 2).

X-ray images can vary a lot in terms of brightness and contrast as well as in the imaged
region of anatomy and surrounding area. Rather than an appearance model that accounts
for the entire image it therefore makes sense to consider only a limited region around
the bone contours. Specifically, appearance models were bands of width 2h centred on
the contour. Mathematically, these can be described by warp functions ω : x ∈ R2 7→
(α,δ ) ∈ [0,1]× [−h,h] from subsets of image coordinates to rectangular regions, the
texture patches. As shown in Figure 3, the value of α corresponds to the normalised
arclength of the shape and δ to the distance normal to the shape. It is important to note
that ω is dependent on the shape and position of the object. Global appearance parameters,
brightness β and contrast γ , are included in the model parameters as Ag = {β ,γ} and are
thus automatically inferred by the segmentation algorithm.

3.1 Single Object Appearance
A warp ω maps intensity values of an image region Ω onto a rectangular texture patch

T : [0,1]× [−h,h]→ R by T (ω(Ω)) = I(Ω).

Making the assumption that pixel values on a texture patch are independently Gaussian
distributed, the local appearance is modelled by means and variances, Al = {µT ,σ2

T}
which are estimated from training data using maximum likelihood. The likelihood of the
parameters given the image I is modelled as:

p(I|G,S,Ag,Al) = ∏
x∈Ω

p
(

I(x)−β

γ

∣∣∣∣µT (ω(x)),σ2
T (ω(x))

)
(3)

where geometry and shape are accounted for by the warp ω .
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3.2 Multiple Object Appearance
When segmenting multiple objects, appearance overlap should be taken into account.
Here the two-object case is considered but generalisation to more objects is straight-
forward. Each object’s appearance mask divides the image into three image regions. The
region corresponding to the mask divides into regions hypothesised as interior and exte-
rior to the object. The third image region is the background not corresponding to the
mask. These regions are named Ωin

f ,Ωout
f ,Ωbgd

f for the femur and Ωin
t ,Ωout

t ,Ωbgd
t for the

tibia. Considering object overlaps, there are nine possible region types: Ωin
f ∩Ωin

t ,Ωin
f ∩

Ωout
t , . . . ,Ωbgd

f ∩Ω
bgd
t . For each of these regions, the nature of the likelihood functions

must be considered. Those used here were motivated by x-ray image formation.

3.2.1 X-ray image formation

Photons emitted from an x-ray source and interacting with tissue are absorbed, scattered
or transmitted. Noise due to scattering is largely filtered out in modern x-ray radioscopic
equipment. The probability P that a photon is absorbed follows Beer’s Law, so P = e−m

where m =
∫

L µ(x)dx, with µ being the opacity and L the path of the photon through the
object. In the simplest case m = µ · l with l being the thickness of the object and µ the
mean opacity. The intensity I of a point in an x-ray image created by a ray that has passed
through an object is then approximated as

I = I0e−m (4)

where I0 is the intensity of a pixel created by an undisturbed ray. (The film, equipment
and digitisation process also influence the image but are not modelled here.) Consider the
case of two objects that are partially overlapping. An x-ray passing only through the first
object creates an intensity I1 = I0e−m1 and one passing only through the second object
creates I2 = I0e−m2 . The intensity I1,2 where the objects’ images overlap is then

I1,2 = I0e−(m1+m2) =
I1I2

I0
(5)

Without loss of generality let the maximum intensity in an image I : R2 → [0,1] be 1.
Note that x-ray images are negatives, so an intensity of 1 is visualised as black. It can be
assumed that at least one pixel in an image is created by an undisturbed ray. Therefore,
intensities in regions of overlap are approximately multiplicative.

3.2.2 Likelihood functions

The mapping from an observation’s region type to its associated form of likelihood func-
tion is given in Table 1. Since the opacity of soft tissue is less than that of bone, the
likelihood for pixels lying in the region of overlap of soft tissue and bone is approximated
as being the same as if only bone were present. In regions of overlap of the exterior
parts of two object masks, a Gaussian mixture (abbreviated as p f +t(x)) is used since the
observations are modelled by both masks. In regions of overlap of the interior parts of
two object masks, the intensities are approximately multiplicative, so the normal product
distribution F(µTf (ω(x)),σ2

Tf
(ω(x)),µTt (ω(x)),σ2

Tt
(ω(x))) is used. The normal product

distribution is defined as follows:

Let X be normally distributed with N(µX ,σ2
X ) and Y with N(µY ,σ2

Y ). XY is
then normal product distributed, denoted by XY ∼ F(µX ,σ2

X ,µY ,σ2
Y ).
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x ∈ Likelihood factor abbr.a

Ωin
f ∩Ωout

t p
(

I(x)−β

γ

∣∣∣µTf (ω(x)),σ2
Tf

(ω(x))
)

p f (x)

Ωin
f ∩Ω

bgd
t p

(
I(x)−β

γ

∣∣∣µTf (ω(x)),σ2
Tf

(ω(x))
)

p f (x)

Ωout
f ∩Ω

bgd
t p

(
I(x)−β

γ

∣∣∣µTf (ω(x)),σ2
Tf

(ω(x))
)

p f (x)

Ωout
f ∩Ωin

t p
(

I(x)−β

γ

∣∣∣µTt (ω(x)),σ2
Tt
(ω(x))

)
pt(x)

Ω
bgd
f ∩Ωin

t p
(

I(x)−β

γ

∣∣∣µTt (ω(x)),σ2
Tt
(ω(x))

)
pt(x)

Ω
bgd
f ∩Ωout

t p
(

I(x)−β

γ

∣∣∣µTt (ω(x)),σ2
Tt
(ω(x))

)
pt(x)

Ωin
f ∩Ωin

t F(µTf (ω(x)),σ2
Tf

(ω(x)),µTt (ω(x)),σ2
Tt
(ω(x))) pF(x)

Ωout
f ∩Ωout

t
1
2 p

(
I(x)−β

γ

∣∣∣µTf (ω(x)),σ2
Tf

(ω(x))
)

+ 1
2 p

(
I(x)−β

γ

∣∣∣µTt (ω(x)),σ2
Tt
(ω(x))

)
p f +t(x)

aAbbreviation to simplify further notation.
Table 1: Likelihood calculation with overlaps (F is the normal product distribution)

Usually the density F cannot be calculated analytically and approximation techniques
have to be used to estimate it [13]. Practically, the following approximation can be used.

F(µX ,σ2
X ,µY ,σ2

Y )≈N(µX µY ,σ2
X σ

2
Y + µX σ

2
Y + µY σ

2
X )

The final likelihood is then

p(I|G,S,Ag,Al) = ∏
x∈Ω1

p f (x) · ∏
x∈Ω2

pt(x) · ∏
x∈Ω3

p f +t(x) · ∏
x∈Ω4

pF(x) (6)

with
Ω1 = (Ωin

f ∩ (Ωout
t ∪Ω

bgd
t ))∪ (Ωout

f ∩Ω
bgd
t ) Ω2 = (Ωin

t ∩ (Ωout
f ∪Ω

bgd
f ))∪ (Ωout

t ∩Ω
bgd
f )

Ω3 = Ω
out
f ∩Ω

out
t Ω4 = Ω

in
f ∩Ω

in
t

Learning the likelihood model Appearance learning constructs the texture patches
{T1, . . . ,Tn} and calculates the pixelwise means {µT} and variances {σ2

T}. For our ap-
plication, only regions not overlapping other bones were used to estimate them. Missing
data were then estimated by interpolating from neighbouring pixels. Estimated means are
shown in Figure 4.

3.3 Prior Distributions
Priors P(G),P(S),P(Ag),P(Al) were chosen to reflect beliefs about the behaviour of the
variables. In this application, Gaussian priors were used for brightness β , contrast γ ,
rotations θ ,θ f ,θt and local appearance Al with the corresponding means and variances
estimated from training data using maximum likelihood. Translation (tx, ty) had a uni-
form prior over a rectangular region of the image and scale priors for s f and st were
log-Gaussian. The specifying parameters of the latter distributions were the geometric
mean and geometric variance and they were also estimated from training data.

The learning of the shape model priors was performed independently for femur and
tibia. Femur shapes S f = {s1

f , . . . ,s
N
f } were aligned and normalised using Procrustes

analysis, the mean S f and the covariance matrix Σ f calculated. PCA was applied to Σ f

decomposing it into Σ f = Λ f ·Φ f ·Λ−1
f , the eigenvalue vector Λ f and the eigenvectors Φ f .

The priors on the shape parameters were modelled as standard Gaussian distributions.
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3.4 Sampling the Posterior with Markov Chain Monte Carlo
Markov chain Monte Carlo (MCMC) methods are used to generate samples from a target
distribution π(x) and subsequently to estimate expectations of functions under this dis-
tribution (see Andrieu et al. [1] for a good introduction). The target distribution here
was the posterior of Equation (1). The Metropolis-Hastings MCMC algorithm itera-
tively samples from a proposal distribution q(x′|x) and accepts proposals with probability
min

{
1, π(x′)q(x′|x)

π(x)q(x|x′)

}
. Note that it is sufficient to know π up to a normalising constant. The

design of the proposal distribution q is important and many practical MCMC algorithms
differ only in the choice of q. The simplest choice is a symmetric random walk proposal
q(x′|x) = q(x|x′), usually with q∼N(x,Σ). The choice of the covariance matrix Σ is then
important since large steps can lead to high rejection rates while small steps result in slow
exploration and failure to explore certain modes of the distribution. Convergence can be
improved by including gradient information in the proposal. The Langevin method uses
the proposal distribution q(x′|x) = N(x +0.5r2∆(x),r2) with ∆(x) being the gradient and
r the expected step size. It is a simple variant of hybrid (Hamiltonian) MCMC. In many
computer vision applications it is not possible to compute gradients analytically and this
is also true of most parameters in this application. However, partial derivatives with re-
spect to brightness ∂P(I|M)

∂β
and contrast ∂P(I|M)

∂γ
are easily and efficiently calculable. A

useful property of MCMC is that it is possible to combine several samplers into mixtures
or cycles. This means, for example, that it is possible to update the parameter vector
x componentwise or blockwise, i.e. the proposal distribution affects either one or more
components of x. Another possibility is to have global proposals to explore the global
behaviour and local proposals to explore local modes. However, one critical property of
practical MCMC algorithms is when the chain is converging, i.e. how many samples have
to be discarded as burn-in. Various diagnostic tools have been developed to assess the con-
vergence, see [2] for a review. Here a rule-of-thumb of discarding 10% as initial burn-in
was adopted.

We used a mixture of the above proposals. Geometric parameters, G, were updated
componentwise and shape parameters blockwise using Gaussian random walk. Blocks
were chosen such that each block accounted for approximately the same variance. Global
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Figure 5: Contour plot of posterior distribution projected onto tx, ty.

appearance parameters Ag = {β ,γ} were updated together using the Langevin method.
The likelihood and also the posterior were quite highly peaked with multiple local maxima
and using standard MCMC would have led to very low acceptance rates and thus very slow
mixing. To achieve sensible acceptance rates and to make the inference feasible, a variant
of tempering (e.g. [5]) to smooth the likelihood and as such the posterior was used.

4 Experiments
The method was evaluated on a data set of 30 standard clinical x-rays (see also [10]).
Images of left knees were mirrored so that they appeared as right knees. All images were
manually annotated and leave-one-out validation was used. Shapes were brought into
correspondence using the MDL approach [4] with curvature [12]. After applying PCA,
the 16 major modes were left unchanged. Rather than discarding the minor modes, their
variances were set to the mean value of the remaining variances to enable search outside
the lower-dimensional subspace.

A coarse-to-fine algorithm was used for speed since likelihood calculation based on
this model was computationally expensive. A two-step approach was used to first find the
main modes of the posterior at low resolution and then explore them at full resolution.
1st step: coarse resolution. Shape was fixed to the mean shape while the other geometric
and global appearance parameters were updated. The chain was initialised randomly, sam-
pled from the prior distributions. The standard deviations of the proposal functions were
set equal to the standard deviations of the associated parameters learned from the training
set. The log-likelihood was multiplied by a constant so that likelihood and prior were
of comparable magnitude so as to encourage exploration of the multi-modal tempered
distribution.
2nd step: fine resolution. The chain was initialised at the MAP solution obtained from
the first step. All model parameters were updated, geometric and global appearance pa-
rameters with decreased variance. Shape parameters were updated in blocks with proposal
standard deviations set to half the standard deviations of the respective parameters. The
blocks were:

eigenmodes

major eigenmodes︷ ︸︸ ︷
1︸︷︷︸
1st

, 2︸︷︷︸
2nd

, 3 , 4︸ ︷︷ ︸
3rd

, 5 , 6 , . . . , 16︸ ︷︷ ︸
4th

,

minor eigenmodes︷ ︸︸ ︷
17 , . . . . . . . . .︸ ︷︷ ︸

5thblock
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Figure 7: Illustration of uncertainty on seg-
ments of the femur (top) and tibia (bottom).

The choice to have four blocks of major eigenmodes and one of the minor eigenmodes
was a trade-off between speed and convergence. Large blocks can lead to a higher rejec-
tion rate (fewer likelihood evaluations) and small blocks to better convergence since in
each iteration only a few shape parameters are changed, but with the cost of many like-
lihood evaluations. Further improvements in speed were achieved by sampling pixels in
“uninteresting” regions of the mask at a lower density. The application of measuring the
joint space demands higher accuracy along the femoral condyles and tibial plateaux than
elsewhere. Therefore, the likelihood was calculated for every pixel around the joint space
and only at quarter resolution in the other areas. Step 2 resulted in a representation of the
posterior distribution.

Figure 5 shows a contour plot of a posterior projected onto the translation parameter
space. The posterior appears to be highly peaked in the x-direction while there are ‘false’
modes in the y-direction. However, the second step in the MCMC scheme is likely to
explore the central, more highly peaked, mode well.

Figure 6 shows an example test image with the MAP estimates overlaid along with a
manual annotation. The mean contour cannot be readily distinguished from the MAP con-
tour and is therefore not shown. This was also true of most other test images. Inferred con-
tours can be compared to a manually annotated contour based on mean point-to-contour
distance defined as the average Euclidean distance from the landmark positions to the
annotated contour. Mean point-to-contour distances along the femoral condyles (E f ) and
along the tibial plateaux (Et ) of the image in Figure 6 are shown in Figure 8. The values
of E f and Et are also indicated for the mean and MAP contours computed from the Monte
Carlo samples.

The values of E f and Et obtained with the thirty test images are summarised in Fig-
ure 9. Each histogram bar indicates the Monte Carlo estimate of the expectation of the
mean point-to-contour distance under the posterior distribution. Error bars indicate stan-
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Figure 9: Statistics summarising mean
point-to-contour distances for the test im-
ages (see text).

dard deviations and MAP contour errors are also indicated.
It is interesting to investigate which parts of the bone contours give rise to large varia-

tions in contour localisation. Low variation should indicate good discrimination between
the interior and exterior of the object. This reasoning is approximate since points on the
contour are updated in blocks depending on the (global) shape model. Figure 7 shows two
examples in which the dashed line indicates a manual annotation. The dot-dashed line in-
dicates a mean distance contour created by perpendicular displacement of each point on
the contour by that point’s expected point-to-contour distance under the posterior distri-
bution. The solid line indicates displacement by an additional three standard deviations.
The top example shows a part of the femur where point-to-contour distances are small,
indicating agreement; a strong edge is apparent. The lower example is a part of the tibia
that results in far greater uncertainty.

5 Discussion and Conclusions
A probabilistic framework for segmentation of multiple objects was described in which
object appearance overlaps were explicitly modelled. The output is not a single con-
tour but Monte Carlo samples from a posterior distribution over contours. The approach
is broadly applicable since, for example, segmentation of overlapping objects is almost
inevitable in medical applications (e.g. [11]). Depending on the actual application, dif-
ferent likelihood functions might have to be adopted for example to account for differing
imaging modalities. The likelihood functions used here were explicitly defined for x-ray
images.

Since segmentation is often only an intermediate step it is important to quantify and
propagate uncertainty to higher level processes. An important example is the estimation
of areas and volumes in medical images. The method was applied to segmentation of
femoral condyles and tibial plateaux and as such could be used to estimate joint space
as a proxy for cartilage volume, for example. It achieved reasonable results based on a
relatively small and challenging data set.

Bayesian inference provides the machinery for quantifying segmentation uncertainty
and the method presented here is a step towards that goal. The results showed that the
exploration of the multi-modal posterior was suboptimal using the standard MCMC tech-
niques. The use of data-driven and mode-hopping MCMC schemes for better exploration
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of the posterior should be investigated [8, 9]. Better models of the shape-free appearance
also need to be incorporated in this framework. A significant source of uncertainty is the
process of manual annotation, resulting in inter-observer and intra-observer variability.
Future work could usefully extend the approach by explicitly modelling uncertainty in
the manual annotations upon which learning is performed.
Acknowledgments M. Seise was partially funded by EPSRC. H. H. Thodberg made avail-
able the code for the MDL method and Dr B. Oliver provided the knee images. Thanks to
Tim Roberts for helpful discussions.
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