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Abstract

Occlusion boundaries are notoriously difficult for manygbabased com-
puter vision algorithms, but they also provide potentiaifeful information
about scene structure and shape. Using short video clippregent a novel
method for scoring the degree to which edges exhibit ocmtusiwWe first
utilize a spatio-temporal edge detector which estimateg strength, orien-
tation, and normal motion. By then extracting patches fratiee side of
each detected (possibly moving) edglet, we can estimateammgpbare mo-
tion to determine if occlusion is present. This completelyal, bottom-up
approach is intended to provide powerful low-level infotioa for use by
higher-level reasoning methods.

1 Introduction

Occlusion boundaries provide strong cues about the 3Dtateuof a natural scene. Their
detection has particular application in scene segmentdigure-ground separation, and
shape extraction, all of which can improve object recognitand detectione(g. [21]).
Such boundaries correspond to locations in an image wherploysical surface is closer
to the camera than another. Usually, these boundaries soeviaible as edges. In this
paper, we explicitly distinguish between the detectiorypfdal edges, which may result
from changes in intensity, color, or texture, dmindarieswhich additionally correspond
to 3D scene structure. Indeed, we will consider occlusiamidaries to be a subset of the
edges in a scene. The goal of this work is to identify thosesdlyg an image which are
also occlusion boundaries. As with general scene segnmmtaheasuring the perfor-
mance of edge detectors is fairly ill-defined beyond the dsemantic labels provided
by humans. Occlusion boundaries, however, have a physeahimg for which the notion
of a “correct” answer is more easily defined.

Occlusion cannot be detected from a single image. Thusewhé use of sophisti-
cated edge detectors that can handle texture and colorl(§14,7]) may offer improved
results over a simple Canny edge detector [5], they stiliréily) respond strongly to
edges which do not correspond to any physical occlusion.luSion can, however, be
observed through maotion — either the scene’s, the camerdmth. Without motion (and
without non-trivial higher level knowledge), it is impob# to distinguish between edges
and boundaries in a single image.
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When one object occludes another, due to either object'somati to parallax from
camera movement, pixels may disappear or become visibles odelusion and disoc-
clusion are the source of significant difficulty for many cartey vision methods, which
often rely on image patches that may overlap the boundaBasce it is generally as-
sumed that all the pixels within a patch “belong togetherd.(are from the same object,
motion layergtc.), patches overlapping occlusion boundaries violate tssiaption and
muddy results. For this reason, patches near boundariesftere treated as outliers,
or multiple/adaptive-windowing techniques are employedl[0, 11]. By contrast, the
work of this paper will focus precisely on these boundaresrtselves and will attempt
to detect them directly by augmenting standard single-eredpge detection with motion
information.

Focusing explicitly on motion at the edges in a scene withallis to avoid dense mo-
tion estimation and reasoning via full-blown optical floideved by region-growing or
clustering approaches. In addition, we can dedimzzl occlusion directly using a bottom-
up approach which is complimentary to top-down approachasrely on higher-level
reasoning. Such methods often impose the restrictive gsttamthat the scene consists
of a set of distinct layers moving separately. The challesfgee purely local, bottom-up
approach is estimating and utilizing motion informatioresactly those locations (occlu-
sion boundaries) at which it arguably the most difficult taeadi.

Using a few frames of video (typically 6-10), we will levemgpace-time edge de-
tection [1, 4, 8, 22], which simultaneously estimates laxdde strength, orientation, and
crucially, edgespeed in the direction normal to its orientation. Given these ditas,
we can then safely extract spatio-temporal patches of sittedata from either side of
a moving edge. By analyzing and comparing the motion in tiesepatches, we can
estimate the degree to which we believe occlusion is oauyithiere.

After some discussion of related work, the above approaekpkined in more detail
in the remainder of the paper, followed by results on natanabje sequences.

2 Related Work

Martin et al. [14] have designed an excellent edge detector which hasttesaad (using
human-labeled data) to respond to those local gradientsiglithess, color, or texture
which people generally seem to label as edges. (Note thatutimrs’ use of the term
“boundaries” does not directly correspond to the extractibthe occlusion boundaries
sought in this work). Their comparison of histograms onegitide of proposed oriented
edges allows the detection of difficult complex edges, suckthase between textured
regions or in clutter. The Compass Edge Detector uses a iaitaishistogram-based ap-
proach [15, 17] but without learning all the parameters flarman-labeled data. None of
these approaches, however, incorporate motion informatiseek specifically to identify
occlusion boundaries.

Smith et al. [20] track edge fragments and use Expectation Maximizatiothen
segment the scene into regions with consistent motion.rHpgiroach is one of the few
that tracks edges/boundaries directly, but it still assuitagered scene structure, and the
method seems to work best on two-layer sequences (computatireases exponentially
with the number of layers). Our completely local approachtte other hand, makes no
assumption that the scene is layered and should theref@pglieable to a more general
set of scenes. Also, the initial step in [20] of linking edgeets into chains which are
part of a single surface is non-trivial, but quite crucialcs it is a hard decision imposed
on the remainder of the system.



Black and Fleet [3] also attempt to estimate local eviderdaxolusion by analyzing
motion. They build a parametric model of local occlusiorhivitsampled circular regions
and then estimate the posterior probability of this modeigiparticle filtering. Demon-
strated results are quite limited, possibly due to the §igamt computational expense of
evaluating the thousands of particles necessary to sammplparameter space for each
region.

Many approaches segment dense motion estimates derivadfitical flow into dis-
tinct regions or layers(g. [12, 19], to name just a few), usually treating the erratguits
at boundaries as outliers to an underlying smooth procdss stibsequent delineation of
precise motion boundaries, if performed at all, is gengrafllsecondary importance. A
notable exception, however, is found in [9], where vertaadl horizontal between-pixel
motion boundaries plus their interactions with nearby desgtical flow vectors are con-
sidered in an MRF framework. Stereo or structure from magmhniques also have trou-
ble near occlusion boundaries and usually focus on theanssof regions while handling
data near occlusions as complex special cases [6, 10, 1ijv@l, on the other hand, is
not concerned with precise dense motion estimation or fdls8ene reconstruction; we
seek only tadentify oriented boundary locations that correspond to visibléusian.

Also related to occlusion detection is the classical pnobéd T-junction detection,
recently addressed in a discriminative framework by [2p(s&ferences therein for sub-
stantial prior work). That work utilizes spatio-temporhtss (not volumes) and demon-
strates limited extraction of occlusion boundaries. Fghhbi level reasoning, note that
T-junction detection may be a complimentary source of imi@tion to the motiortbound-
ary detection presented here.

As discussed above, our approach will compare motions freorplatches of spatio-
temporal data to determine their consistency. This exatilpm was recently addressed,
though in a rather different context, in the work of [18]. Thg@proach utilizes a con-
tinuous rank-increase measure between Gram matricesgotest from spatio-temporal
derivatives within each patch. This measure provides aanaticonsistency score with-
out explicitly estimating the patches’ motion vectors.

3 Propertiesof Local Occlusion

Assume for a moment that we have detected a small edge fragoreiedgelet”) in an
image. If that edgelet corresponds to simple texture on tilace of a single object,
we would expect the patches on either side to exhibit mot@rsistent with the edglet
and with each other. If the edglet’s appearance is the re§w@h occlusion boundary,
we would expect, in general, the patch on the foregrounddifideat occlusion to move
consistently with the edgelet while the background patckieadn a manner which con-
tradicts the motion of the foreground patch and/or the edge.

A motion estimate for a patch of intensity data may be conmpfitem the patch’s
spatio-temporal derivatives [13, 18, 23]. This idea is bdase the brightness constancy
assumption and forms the fundamental building block foryragtical flow, tracking, and
registration methods. But as discussed, the underlying@stson when using a patch of
data is that all the data within that patch belongs to the samface and therefore moves
together. If we névely extract a spatio-temporal patch in the vicinity of avimg edgelet
corresponding to an occlusion boundary, however, we runiskeof including data from
two different surfaces or objects in the scene. Our devigatwill then be corrupted, and
our motion estimates will be incorrect. To extract a morerappate patch which does
not cross the occlusion boundary, we first need a method tectileg oriented edgelets
in an image sequence and determining their normal velocity.
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4 Spatio-Temporal Edge Detection

In this section we discuss the detection of oriented, moguhges in short video clips. We
use the histogram-based approach of [22], summarized Byreising a more general,
“non-parametric” model of edges, this method offers supgrérformance to the classical
filtering approaches of [1, 4, 8], which effectively considaly mean intensities on either
side of an edge. Improvement is most apparent for edges timgdextured or cluttered
regions, which are precisely those edges at which occlusiamst likely to be visible.
Thus we have chosen an initial edge detection method whicksweell in such cases.

We define an edge to be a position in the image for which theiloligion of intensity
(or textons, coloretc.) is significantly different on either side of an orientedidiug line.
To estimate oriented edge strength in a single image, onexdsact a circular patch of
data, divide that patch into a set of “pie slices,” and effitie compute histograms of
the intensity in each half of the patch for a given set of deagans [14, 15, 17]. The
histograms from two patch halves at a given orientation anepared using & distance
metric, and the largest distance is returned as that positedge strength, while the
corresponding orientation is used as that edge’s spat@aitation.

Orientation i Orientation i+1 It-axis

Figure 1:We use a volumetric patch to simultaneously detect edges and estimate liospatial
orientation and normal velocity. The spherical patch can be divided istogram sections and
oriented to produce a detector for a given set of spatial orientations@mnaal motions. (Figure
reproduced from [22].)

Similarly, the angle with respect to thamporal axis at which an edge sweeps through
a sequence of images corresponds to its normal velocity.gkample, a simple vertical
step edge moving left to right producesyanslice of intensities as shown in Figure 2 (a).)
As shown in Figure 1, we can extract a spherical (or ellipgpidatch from the spatio-
temporal volume of data and apply the same approach as abquiek the temporal
orientation at which histograms computed from each halhef temisphere differ the
most. The sphere can be divided into sections (like thosa ofange), analogous to the
pie slices above. This sectioned sphere is first orientedgivesn spatial orientationgs,
and then the sections can be used to efficiently construattiigred histograms to find
the best temporal orientatidwhich corresponds to the normal velocity at tBat

The best pail(6s, 8;) specifies the normal for the best dividiptane for the patch
around a giverix, y,t) position in the image sequence. When extracting patchesatda
compare motion on either side of a moving edgelet, that pkupeecisely the boundary
we want to avoid crossing. This is illustrated in Figure 2.(a), we see an-t slice of
data from a spatio-temporal volume in which a vertical edgeen from left to right. If
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Figure 2: Extraction of spatio-temporal patches aligned to detected moving edggsSiniple
patches in arx-t slice will cross a moving edge, but (b) using a spatio-temporal movirg ed
detector we can extract patches skewed to be aligned with the edge. @yuwetric patch is
shown for an oriented, moving edge, with its associated coordinate frame

we detect only that edge’s position (depicted by the smadl&)j and orientation within

a single frame (which is into the page for a vertical edgelraexed patches will contain
data from both sides of the edge over time. Using a spatipéeah edge detector as
depicted in (b), we can also estimate the normal motion oétige, allowing us to extract
patches which respect the edge’s motion and only considerfdam one side of the

(potential) occlusion boundary at a time.

5 Comparing Motions

We can now safely extract spatio-temporal patches of datdtber side of a moving edge
which are consistent with that edge’s normal motion. By gsiriented, skewed patches
as in Figure 2 (b), we effectively remove the local normaliorotomponent. We can then
estimate and compare only thesidual tangential and/or normal motions in either patch.
Note that the patches’ coordinate frames correspond gxadthe directions of motion in
which we are interested; their bases are aligned to the ®dgehal and tangent directions
spatially andy}, and temporally to the direction of normal motid)( So we can detect
occlusion boundaries by comparing the differences in nbama tangential motion from
the two patches. At a boundary, we expect to see a signifitfertahce in these estimated
motions. (In the remainder of the paper, we will adopt i, ) notation to emphasize
that all analyses are performed in a coordinate frame velati the current edge under
consideration.)

Since we are assuming small motion between frames, we wWlladstempt to estimate
and compare normal and tangentiahslation (0, V) within the two extracted patches. We
use the classical approach of [13] extended to multiple &sraimilarly to [18], since our
patches also have temporal extent.

Leveraging the standard brightness constancy assumptiondptical flow at each
of the M pixels within a patch, we stack the patch’s spatio-tempiatahsity derivatives,



again taken along the y, andf directions within the patch:
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This leads to the following least squares problem to solvéife desired motion compo-
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where all summations are taken over tepixels within the patch. Note that this is
a slightly different formulation than the one given in [18 we are solving for two-
dimensional motion vector in the image plane instead of eettimensional vector de-
scribing the direction of motion through space-time. Ndirwgg by the temporal motion
componenti(e. “w” in [18]) makes the approaches equivalent for our purposes.

While we can always find a solution to this system of equations,‘confidence” in
the resulting estimated motion vector depends on the $gatidients within the patch.
Loosely speaking, in a patch taken from a nearly-unifornioregf the image, the covari-
ance on the estimated motion will be much higher than theri@wee for a patch contain-
ing strong gradient information which provides more meghihevidence of motion. It
is critical that we take these covariances into account vdoemparing motion estimates
from different patches, especially since it is very commiuat ©ne side of an occlusion
boundary is nearly uniform. Luckily, the matr® in (2), which is the the same as that
used in the Harris detector [7] (except that it involves atisp@mporal patch), exactly
captures the necessary spatial covariance informatimceSve have tw& matrices, one
from each side of the patch, we will consider two motion eatis to be consistent if their
difference according teither side’s covariance estimate is small. Thus, we will take the
maximum of the two consistency scores to accomplish thiegd @R operation, as will
be seen below.
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Figure 3: For patches of data on either side of an edge, the covariance on thetedtimation
influences the occlusion scoring. The motions for the left example nwrgistent because we are
less sure of the tangential motion. We are fairly sure that the right exasngaeocclusion boundary
because the confident normal motion estimates disagree.



To make this discussion more concrete, consider the patctataef taken around a
vertically-oriented edge shown in the left half of Figure Bssume we have used Eq.
(2) to estimate the indicated motions on either side of tlgeedecause of the lack of
significant horizontal texture on the left side of the edge,cannot be very sure of the
estimated tangential motion, but we are fairly certain allbe normal motion. On the
highly-textured right side, we are confident about both congmts of the motion. These
confidences are indicated by covariance ellipses. If weidenthe left and right motions
as 2D points in({,V) space, we can compare them by evaluating the distance betwee
them. Without taking the covariance into account, the diffiee in motion appears to be
significant, which would indicate occlusion. But usi@go normalize the distance com-
putation (.e. computing a Mahalanobis distance) allows us to be more Rforg” along
the tangential direction since we are less sure about theitlefs motion in that direction.
Thus, this edge will receive a lower (albeit non-zero) ositln score, as desired.

In the right half of Figure 3, we see the same patch of data different estimated
motion for the right patch. In this case, we are still fairgnéident that there is no residual
normal motion in the left halfi(e. the initial normal speed estimate is correct) and we are
also confident that the right half did move normal to the edigéhis case, the two points’
motions plotted in(0,V) space are roughly the same (simple Euclidean) distancé apar
as they were for the previous example, so without takingavexes into account, either
example would have the same degree of motion inconsistemoythus the same occlu-
sion score). But because the variance on the normal compohenr motion estimate
in the left patch is small, we will trust the disagreement @mmal motions between the
two sides and give the correct high occlusion score for tkesrgle. Note that this is true
despite the fact that the difference in the normal companisrdctuallysmaller than the
difference in the tangential components. These examplasdstrate that the covariance
estimates allow us to rely on the most informative motion porrent when determining
occlusion.

For each edgelet identified in a scene, we would like to defiseoae which will be
near zero for edgelets at which no occlusion is visible arelfon edgelets where there
is clear evidence of occlusion. From two patcH&sandPg, aligned to either side of the
edgelet, we estimate motion vectogs=[ G. V. | andur=[ (r Vg |T as described
above and compute their differengg = u. — ur. We can then compute the consistency
of the left and right motion vectors according to each patspatial information, encoded
in Gg andG, . As discussed, we will keep the maximum of the the two scdfemlly, to
convert to a measure @ficonsistency, and thus a measure of occlusion, we will satistr
the result from one. The following equation captures thacpss:

T T

We can use this equation to score each edgelet as also beowglasion boundary. Re-
sults using this approach are provided in the next section.

6 Results

Given a few frames of an image sequence, we can first find edgkshan estimate
whether those edges exhibit occlusion within the sequehds.important to note that
this approach is purely local and can therefore only reaboniteocclusion at an edge if
visible occlusion actually occurs at that location withire tobservation’s timespan. We
may observe edges which lie in front of a uniform backgroumdtfie duration of the



video clip. These edges will not exhibit any visual cues aflasion locally, and thus
they will not be detected as occlusion boundaries by our atkthigher-level reasoning
and edge grouping or chaining, which may handle such sitatiare left to future work.

We first pre-process the data to remove dominant motion. fidgents large ob-
served normal motions due to camera movement from oversliagohe relative motion
between surfaced.é. the parallax), which provides the evidence of occlusion &snd
usually relatively subtle. This step simply consists of Bfiame affine registration of
each frame in the sequence to a selected reference fagietlie middle frame of the
sequence).

Next we compute edge strength, orientation, and normalanati each spatial loca-
tion according to the method outlined above and in [22],udiig the use of sub-pixel
edge localization and interpolation of orientation andnmalrspeed. Non-local maxima
of edge strength are also suppressed [16], and the resyktisrhsis thresholded. A patch
of data is then extracted around each edglet, aligned toigatation and normal motion.
The residual normal and tangential motions are computedifber half of the patch as
described. Finally, the measure of occlusion given by (8pimputed.

As noted in Section 2, Shechtman and Irani have recentlygsexpan efficient method
for computing motion (in)consistency from two spatio-terad intensity patchewithout
explicitly estimating motion itself [18]. Their work, hower, was in the context of behav-
iour recognition. We compare their rank-based score to gplicit motion comparison
score in the results that follow. Each score is computedyusia same initial edge detec-
tions and extracted patches.

In order to quantitatively evaluate results, we hand-lathehe occlusion boundaries
in each test sequence below. For each occlusion scoringpohétlars and the rank-based
score from [18]), we vary the threshold on the score and douetand false positives. We
can then generate and compare plots of pixel-wise precisiomecall for each example
using both scoring methods. (To mitigate difficulties inqisely localizing boundaries
when labeling images by hand, we dilate the ground truthl iatege by one pixel when
comparing it to the score images.)

Figure 4 shows the middle frame of an 8-frame synthetic setpidepicting a square
translating up and right in front of a textured backgrounke hiand-labeled ground truth
occlusion boundaries are overlaid in red, and the edgegttrémalso provided. Using our
method, we see that the boundaries of the square fairtle background’s texture edges
— correctly receive a high occlusion score. Using the rasweld score provides visually
similar discrimination between edges and occlusion boteslaWhen we compare the
scores’ precision-recall plots in Figure 6 (a), we see thias$ ¢s slightly superior.

The results for three real sequences from a handheld videerea each 8-10 frames
in length, are provided in Figure 5. Each shows qualitayitiedit we are generally able to
distinguish occlusion boundaries from texture edges usiaglescribed approach. Fur-
thermore, we see in Figure 6 (b)-(d) significantly bettefgrenance using our scoring
approach, regardless of choice of threshold.

7 Conclusion and Future Work

We have described a novel, bottom-up procedure for detgldaal occlusion boundaries
in short video clips. The notion of locality here applies aply to relatively small spatial
patches, but also to the fact that we rely on short-tesmporal information rather than
long-term edge tracking or higher-level reasoning. Oureggh is also quite general: it
does not require a strict layered scene structure, the eagaerbe moving or stationary,
and the scene can be static or dynamic.
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Figure 4: Results for a 6-frame synthetic sequence depicting a square movingI2 pjxand 2
pixels to the right in each frame. Ground truth occlusion boundariesispiaged in red. For edge
strengths and scores in this figure and in Figure 5, darker color pomds to larger values.
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Figure 5: For handheld video sequences observing a bench in front of ivy éog a tree trunk

(middle), and a set of objects on a textured couch (bottom), we seeasegpative frame of data
with ground truth occlusion boundaries labeled in red, the detected edgwytts, and the two
different occlusion scores, from left to right respectively.
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Figure 6:Precision vs. Recall plots for each example, showing significant pegioce gain when
using our motion-estimation score over the rank-based motion incorgisteasure from [18].

The results provided here only utilize intensity (graysgatformation, but we plan to
extend the entire method to utilize color information aslwéfe believe this will improve
the edge detection process as well as the motion extratkioh of which should result in
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improved occlusion detection. In addition, it may be wortile/to explore the estimation
and comparison of more complex motion modelg.(affine) between the two patches.

Most interestingly, we now have a method for extracting tutial low-level edge
information, including orientation, motion, and occlusiovhich we can leverage for
higher-level inference and reasoning. For example, wedcmalude occlusion and mo-
tion information in the classical perceptual organizatwoblem of salient contour ex-
traction (which generally relies heavily on orientatiotirasites alone). We believe oc-
clusion information will also be useful for figure-groundyegentation, cueing for object
recognition, and other high-level computer vision tasks.
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