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Abstract

Occlusion boundaries are notoriously difficult for many patch-based com-
puter vision algorithms, but they also provide potentiallyuseful information
about scene structure and shape. Using short video clips, wepresent a novel
method for scoring the degree to which edges exhibit occlusion. We first
utilize a spatio-temporal edge detector which estimates edge strength, orien-
tation, and normal motion. By then extracting patches from either side of
each detected (possibly moving) edglet, we can estimate andcompare mo-
tion to determine if occlusion is present. This completely local, bottom-up
approach is intended to provide powerful low-level information for use by
higher-level reasoning methods.

1 Introduction
Occlusion boundaries provide strong cues about the 3D structure of a natural scene. Their
detection has particular application in scene segmentation, figure-ground separation, and
shape extraction, all of which can improve object recognition and detection (e.g. [21]).
Such boundaries correspond to locations in an image where one physical surface is closer
to the camera than another. Usually, these boundaries are also visible as edges. In this
paper, we explicitly distinguish between the detection of typical edges, which may result
from changes in intensity, color, or texture, andboundaries which additionally correspond
to 3D scene structure. Indeed, we will consider occlusion boundaries to be a subset of the
edges in a scene. The goal of this work is to identify those edges in an image which are
also occlusion boundaries. As with general scene segmentation, measuring the perfor-
mance of edge detectors is fairly ill-defined beyond the use of semantic labels provided
by humans. Occlusion boundaries, however, have a physical meaning for which the notion
of a “correct” answer is more easily defined.

Occlusion cannot be detected from a single image. Thus, while the use of sophisti-
cated edge detectors that can handle texture and color ([14,15, 17]) may offer improved
results over a simple Canny edge detector [5], they still (correctly) respond strongly to
edges which do not correspond to any physical occlusion. Occlusion can, however, be
observed through motion – either the scene’s, the camera’s,or both. Without motion (and
without non-trivial higher level knowledge), it is impossible to distinguish between edges
and boundaries in a single image.
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When one object occludes another, due to either object’s motion or to parallax from
camera movement, pixels may disappear or become visible. This occlusion and disoc-
clusion are the source of significant difficulty for many computer vision methods, which
often rely on image patches that may overlap the boundaries.Since it is generally as-
sumed that all the pixels within a patch “belong together” (e.g. are from the same object,
motion layer,etc.), patches overlapping occlusion boundaries violate this assumption and
muddy results. For this reason, patches near boundaries areoften treated as outliers,
or multiple/adaptive-windowing techniques are employed [6, 10, 11]. By contrast, the
work of this paper will focus precisely on these boundaries themselves and will attempt
to detect them directly by augmenting standard single-image edge detection with motion
information.

Focusing explicitly on motion at the edges in a scene will allow us to avoid dense mo-
tion estimation and reasoning via full-blown optical flow followed by region-growing or
clustering approaches. In addition, we can detectlocal occlusion directly using a bottom-
up approach which is complimentary to top-down approaches that rely on higher-level
reasoning. Such methods often impose the restrictive assumption that the scene consists
of a set of distinct layers moving separately. The challengeof a purely local, bottom-up
approach is estimating and utilizing motion information atexactly those locations (occlu-
sion boundaries) at which it arguably the most difficult to obtain.

Using a few frames of video (typically 6-10), we will leverage space-time edge de-
tection [1, 4, 8, 22], which simultaneously estimates localedge strength, orientation, and
crucially, edgespeed in the direction normal to its orientation. Given these quantities,
we can then safely extract spatio-temporal patches of intensity data from either side of
a moving edge. By analyzing and comparing the motion in thesetwo patches, we can
estimate the degree to which we believe occlusion is occurring there.

After some discussion of related work, the above approach isexplained in more detail
in the remainder of the paper, followed by results on naturalimage sequences.

2 Related Work
Martin et al. [14] have designed an excellent edge detector which has beentrained (using
human-labeled data) to respond to those local gradients of brightness, color, or texture
which people generally seem to label as edges. (Note that theauthors’ use of the term
“boundaries” does not directly correspond to the extraction of the occlusion boundaries
sought in this work). Their comparison of histograms on either side of proposed oriented
edges allows the detection of difficult complex edges, such as those between textured
regions or in clutter. The Compass Edge Detector uses a very similar histogram-based ap-
proach [15, 17] but without learning all the parameters fromhuman-labeled data. None of
these approaches, however, incorporate motion information or seek specifically to identify
occlusion boundaries.

Smith et al. [20] track edge fragments and use Expectation Maximizationto then
segment the scene into regions with consistent motion. Their approach is one of the few
that tracks edges/boundaries directly, but it still assumes layered scene structure, and the
method seems to work best on two-layer sequences (computation increases exponentially
with the number of layers). Our completely local approach, on the other hand, makes no
assumption that the scene is layered and should therefore beapplicable to a more general
set of scenes. Also, the initial step in [20] of linking edge pixels into chains which are
part of a single surface is non-trivial, but quite crucial since it is a hard decision imposed
on the remainder of the system.
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Black and Fleet [3] also attempt to estimate local evidence of occlusion by analyzing
motion. They build a parametric model of local occlusion within sampled circular regions
and then estimate the posterior probability of this model using particle filtering. Demon-
strated results are quite limited, possibly due to the significant computational expense of
evaluating the thousands of particles necessary to sample the parameter space for each
region.

Many approaches segment dense motion estimates derived from optical flow into dis-
tinct regions or layers (e.g. [12, 19], to name just a few), usually treating the erratic results
at boundaries as outliers to an underlying smooth process. The subsequent delineation of
precise motion boundaries, if performed at all, is generally of secondary importance. A
notable exception, however, is found in [9], where verticaland horizontal between-pixel
motion boundaries plus their interactions with nearby dense optical flow vectors are con-
sidered in an MRF framework. Stereo or structure from motiontechniques also have trou-
ble near occlusion boundaries and usually focus on the interiors of regions while handling
data near occlusions as complex special cases [6, 10, 11]. Our work, on the other hand, is
not concerned with precise dense motion estimation or full 3D scene reconstruction; we
seek only toidentify oriented boundary locations that correspond to visible occlusion.

Also related to occlusion detection is the classical problem of T-junction detection,
recently addressed in a discriminative framework by [2] (see references therein for sub-
stantial prior work). That work utilizes spatio-temporal slices (not volumes) and demon-
strates limited extraction of occlusion boundaries. For higher level reasoning, note that
T-junction detection may be a complimentary source of information to the motionbound-
ary detection presented here.

As discussed above, our approach will compare motions from two patches of spatio-
temporal data to determine their consistency. This exact problem was recently addressed,
though in a rather different context, in the work of [18]. That approach utilizes a con-
tinuous rank-increase measure between Gram matrices constructed from spatio-temporal
derivatives within each patch. This measure provides a motion inconsistency score with-
out explicitly estimating the patches’ motion vectors.

3 Properties of Local Occlusion
Assume for a moment that we have detected a small edge fragment (or “edgelet”) in an
image. If that edgelet corresponds to simple texture on the surface of a single object,
we would expect the patches on either side to exhibit motion consistent with the edglet
and with each other. If the edglet’s appearance is the resultof an occlusion boundary,
we would expect, in general, the patch on the foreground sideof that occlusion to move
consistently with the edgelet while the background patch moves in a manner which con-
tradicts the motion of the foreground patch and/or the edge.

A motion estimate for a patch of intensity data may be computed from the patch’s
spatio-temporal derivatives [13, 18, 23]. This idea is based on the brightness constancy
assumption and forms the fundamental building block for many optical flow, tracking, and
registration methods. But as discussed, the underlying assumption when using a patch of
data is that all the data within that patch belongs to the samesurface and therefore moves
together. If we näıvely extract a spatio-temporal patch in the vicinity of a moving edgelet
corresponding to an occlusion boundary, however, we run therisk of including data from
two different surfaces or objects in the scene. Our derivatives will then be corrupted, and
our motion estimates will be incorrect. To extract a more appropriate patch which does
not cross the occlusion boundary, we first need a method for detecting oriented edgelets
in an image sequence and determining their normal velocity.
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4 Spatio-Temporal Edge Detection
In this section we discuss the detection of oriented, movingedges in short video clips. We
use the histogram-based approach of [22], summarized here.By using a more general,
“non-parametric” model of edges, this method offers superior performance to the classical
filtering approaches of [1, 4, 8], which effectively consider only mean intensities on either
side of an edge. Improvement is most apparent for edges bordering textured or cluttered
regions, which are precisely those edges at which occlusionis most likely to be visible.
Thus we have chosen an initial edge detection method which works well in such cases.

We define an edge to be a position in the image for which the distribution of intensity
(or textons, color,etc.) is significantly different on either side of an oriented dividing line.
To estimate oriented edge strength in a single image, one canextract a circular patch of
data, divide that patch into a set of “pie slices,” and efficiently compute histograms of
the intensity in each half of the patch for a given set of orientations [14, 15, 17]. The
histograms from two patch halves at a given orientation are compared using aχ2 distance
metric, and the largest distance is returned as that position’s edge strength, while the
corresponding orientation is used as that edge’s spatial orientation.
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Figure 1:We use a volumetric patch to simultaneously detect edges and estimate both their spatial
orientation and normal velocity. The spherical patch can be divided into histogram sections and
oriented to produce a detector for a given set of spatial orientations andnormal motions. (Figure
reproduced from [22].)

Similarly, the angle with respect to thetemporal axis at which an edge sweeps through
a sequence of images corresponds to its normal velocity. (For example, a simple vertical
step edge moving left to right produces anx-t slice of intensities as shown in Figure 2 (a).)
As shown in Figure 1, we can extract a spherical (or ellipsoidal) patch from the spatio-
temporal volume of data and apply the same approach as above to pick the temporal
orientation at which histograms computed from each half of the hemisphere differ the
most. The sphere can be divided into sections (like those of an orange), analogous to the
pie slices above. This sectioned sphere is first oriented to agiven spatial orientation,θs,
and then the sections can be used to efficiently construct therequired histograms to find
the best temporal orientationθtwhich corresponds to the normal velocity at thatθs.

The best pair(θs,θt) specifies the normal for the best dividingplane for the patch
around a given(x,y, t) position in the image sequence. When extracting patches of data to
compare motion on either side of a moving edgelet, that planeis precisely the boundary
we want to avoid crossing. This is illustrated in Figure 2. In(a), we see anx-t slice of
data from a spatio-temporal volume in which a vertical edge moves from left to right. If
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Figure 2: Extraction of spatio-temporal patches aligned to detected moving edges. (a) Simple
patches in anx-t slice will cross a moving edge, but (b) using a spatio-temporal moving edge
detector we can extract patches skewed to be aligned with the edge. (c) A volumetric patch is
shown for an oriented, moving edge, with its associated coordinate frame.

we detect only that edge’s position (depicted by the small circle) and orientation within
a single frame (which is into the page for a vertical edge), extracted patches will contain
data from both sides of the edge over time. Using a spatio-temporal edge detector as
depicted in (b), we can also estimate the normal motion of theedge, allowing us to extract
patches which respect the edge’s motion and only consider data from one side of the
(potential) occlusion boundary at a time.

5 Comparing Motions
We can now safely extract spatio-temporal patches of data oneither side of a moving edge
which are consistent with that edge’s normal motion. By using oriented, skewed patches
as in Figure 2 (b), we effectively remove the local normal motion component. We can then
estimate and compare only theresidual tangential and/or normal motions in either patch.
Note that the patches’ coordinate frames correspond exactly to the directions of motion in
which we are interested; their bases are aligned to the edge’s normal and tangent directions
spatially (x̃ andỹ), and temporally to the direction of normal motion (t̃ ). So we can detect
occlusion boundaries by comparing the differences in normal and tangential motion from
the two patches. At a boundary, we expect to see a significant difference in these estimated
motions. (In the remainder of the paper, we will adopt this(x̃, ỹ, t̃) notation to emphasize
that all analyses are performed in a coordinate frame relative to the current edge under
consideration.)

Since we are assuming small motion between frames, we will only attempt to estimate
and compare normal and tangentialtranslation (ũ, ṽ) within the two extracted patches. We
use the classical approach of [13] extended to multiple frames, similarly to [18], since our
patches also have temporal extent.

Leveraging the standard brightness constancy assumption from optical flow at each
of theM pixels within a patch, we stack the patch’s spatio-temporalintensity derivatives,
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again taken along the ˜x, ỹ, andt̃ directions within the patch:
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This leads to the following least squares problem to solve for the desired motion compo-
nents(ũ, ṽ):
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where all summations are taken over theM pixels within the patch. Note that this is
a slightly different formulation than the one given in [18],as we are solving for two-
dimensional motion vector in the image plane instead of a three-dimensional vector de-
scribing the direction of motion through space-time. Normalizing by the temporal motion
component (i.e. “w” in [18]) makes the approaches equivalent for our purposes.

While we can always find a solution to this system of equations,our “confidence” in
the resulting estimated motion vector depends on the spatial gradients within the patch.
Loosely speaking, in a patch taken from a nearly-uniform region of the image, the covari-
ance on the estimated motion will be much higher than the covariance for a patch contain-
ing strong gradient information which provides more meaningful evidence of motion. It
is critical that we take these covariances into account whencomparing motion estimates
from different patches, especially since it is very common that one side of an occlusion
boundary is nearly uniform. Luckily, the matrixG in (2), which is the the same as that
used in the Harris detector [7] (except that it involves a spatio-temporal patch), exactly
captures the necessary spatial covariance information. Since we have twoG matrices, one
from each side of the patch, we will consider two motion estimates to be consistent if their
difference according toeither side’s covariance estimate is small. Thus, we will take the
maximum of the two consistency scores to accomplish this logical OR operation, as will
be seen below.
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Figure 3: For patches of data on either side of an edge, the covariance on the estimated motion
influences the occlusion scoring. The motions for the left example more consistent because we are
less sure of the tangential motion. We are fairly sure that the right exampleis an occlusion boundary
because the confident normal motion estimates disagree.
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To make this discussion more concrete, consider the patch ofdata taken around a
vertically-oriented edge shown in the left half of Figure 3.Assume we have used Eq.
(2) to estimate the indicated motions on either side of the edge. Because of the lack of
significant horizontal texture on the left side of the edge, we cannot be very sure of the
estimated tangential motion, but we are fairly certain about the normal motion. On the
highly-textured right side, we are confident about both components of the motion. These
confidences are indicated by covariance ellipses. If we consider the left and right motions
as 2D points in(ũ, ṽ) space, we can compare them by evaluating the distance between
them. Without taking the covariance into account, the difference in motion appears to be
significant, which would indicate occlusion. But usingG to normalize the distance com-
putation (i.e. computing a Mahalanobis distance) allows us to be more “forgiving” along
the tangential direction since we are less sure about the left side’s motion in that direction.
Thus, this edge will receive a lower (albeit non-zero) occlusion score, as desired.

In the right half of Figure 3, we see the same patch of data withdifferent estimated
motion for the right patch. In this case, we are still fairly confident that there is no residual
normal motion in the left half (i.e. the initial normal speed estimate is correct) and we are
also confident that the right half did move normal to the edge.In this case, the two points’
motions plotted in(ũ, ṽ) space are roughly the same (simple Euclidean) distance apart
as they were for the previous example, so without taking variances into account, either
example would have the same degree of motion inconsistency (and thus the same occlu-
sion score). But because the variance on the normal component of our motion estimate
in the left patch is small, we will trust the disagreement in normal motions between the
two sides and give the correct high occlusion score for this example. Note that this is true
despite the fact that the difference in the normal components is actuallysmaller than the
difference in the tangential components. These examples demonstrate that the covariance
estimates allow us to rely on the most informative motion component when determining
occlusion.

For each edgelet identified in a scene, we would like to define ascore which will be
near zero for edgelets at which no occlusion is visible and one for edgelets where there
is clear evidence of occlusion. From two patches,PL andPR, aligned to either side of the
edgelet, we estimate motion vectorsuL = [ ũL ṽL ]T anduR = [ ũR ṽR ]T as described
above and compute their differenceud = uL −uR. We can then compute the consistency
of the left and right motion vectors according to each patch’s spatial information, encoded
in GR andGL. As discussed, we will keep the maximum of the the two scores.Finally, to
convert to a measure ofinconsistency, and thus a measure of occlusion, we will substract
the result from one. The following equation captures this process:

score = 1−max

{

exp

(

−

uT
d GLud

2

)

,exp

(

−

uT
d GRud

2

)}

(3)

We can use this equation to score each edgelet as also being anocclusion boundary. Re-
sults using this approach are provided in the next section.

6 Results
Given a few frames of an image sequence, we can first find edges and then estimate
whether those edges exhibit occlusion within the sequence.It is important to note that
this approach is purely local and can therefore only reason about occlusion at an edge if
visible occlusion actually occurs at that location within the observation’s timespan. We
may observe edges which lie in front of a uniform background for the duration of the
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video clip. These edges will not exhibit any visual cues of occlusion locally, and thus
they will not be detected as occlusion boundaries by our method. Higher-level reasoning
and edge grouping or chaining, which may handle such sitations, are left to future work.

We first pre-process the data to remove dominant motion. Thisprevents large ob-
served normal motions due to camera movement from overshadowing the relative motion
between surfaces (i.e. the parallax), which provides the evidence of occlusion andis
usually relatively subtle. This step simply consists of a full-frame affine registration of
each frame in the sequence to a selected reference frame (e.g. the middle frame of the
sequence).

Next we compute edge strength, orientation, and normal motion at each spatial loca-
tion according to the method outlined above and in [22], including the use of sub-pixel
edge localization and interpolation of orientation and normal speed. Non-local maxima
of edge strength are also suppressed [16], and the result is hysteresis thresholded. A patch
of data is then extracted around each edglet, aligned to its orientation and normal motion.
The residual normal and tangential motions are computed foreither half of the patch as
described. Finally, the measure of occlusion given by (3) iscomputed.

As noted in Section 2, Shechtman and Irani have recently proposed an efficient method
for computing motion (in)consistency from two spatio-temporal intensity patcheswithout
explicitly estimating motion itself [18]. Their work, however, was in the context of behav-
iour recognition. We compare their rank-based score to our explicit motion comparison
score in the results that follow. Each score is computed using the same initial edge detec-
tions and extracted patches.

In order to quantitatively evaluate results, we hand-labeled the occlusion boundaries
in each test sequence below. For each occlusion scoring method (ours and the rank-based
score from [18]), we vary the threshold on the score and counttrue and false positives. We
can then generate and compare plots of pixel-wise precisionvs. recall for each example
using both scoring methods. (To mitigate difficulties in precisely localizing boundaries
when labeling images by hand, we dilate the ground truth label image by one pixel when
comparing it to the score images.)

Figure 4 shows the middle frame of an 8-frame synthetic sequence depicting a square
translating up and right in front of a textured background. The hand-labeled ground truth
occlusion boundaries are overlaid in red, and the edge strength is also provided. Using our
method, we see that the boundaries of the square – andnot the background’s texture edges
– correctly receive a high occlusion score. Using the rank-based score provides visually
similar discrimination between edges and occlusion boundaries. When we compare the
scores’ precision-recall plots in Figure 6 (a), we see that ours is slightly superior.

The results for three real sequences from a handheld video camera, each 8-10 frames
in length, are provided in Figure 5. Each shows qualitatively that we are generally able to
distinguish occlusion boundaries from texture edges usingthe described approach. Fur-
thermore, we see in Figure 6 (b)-(d) significantly better performance using our scoring
approach, regardless of choice of threshold.

7 Conclusion and Future Work
We have described a novel, bottom-up procedure for detecting local occlusion boundaries
in short video clips. The notion of locality here applies notonly to relatively small spatial
patches, but also to the fact that we rely on short-termtemporal information rather than
long-term edge tracking or higher-level reasoning. Our approach is also quite general: it
does not require a strict layered scene structure, the camera can be moving or stationary,
and the scene can be static or dynamic.

8



Middle Frame of Sequence Edge Strength Our Occlusion Score Rank-Based Score

Figure 4: Results for a 6-frame synthetic sequence depicting a square moving 2 pixels up and 2
pixels to the right in each frame. Ground truth occlusion boundaries are displayed in red. For edge
strengths and scores in this figure and in Figure 5, darker color corresponds to larger values.

Middle Frame of Sequence Edge Strength Our Occlusion Score Rank-Based Score

Figure 5: For handheld video sequences observing a bench in front of ivy (top) and a tree trunk
(middle), and a set of objects on a textured couch (bottom), we see a representative frame of data
with ground truth occlusion boundaries labeled in red, the detected edge strengths, and the two
different occlusion scores, from left to right respectively.
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Figure 6:Precision vs. Recall plots for each example, showing significant performance gain when
using our motion-estimation score over the rank-based motion inconsistency measure from [18].

The results provided here only utilize intensity (grayscale) information, but we plan to
extend the entire method to utilize color information as well. We believe this will improve
the edge detection process as well as the motion extraction,both of which should result in
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improved occlusion detection. In addition, it may be worthwhile to explore the estimation
and comparison of more complex motion models (e.g. affine) between the two patches.

Most interestingly, we now have a method for extracting substantial low-level edge
information, including orientation, motion, and occlusion, which we can leverage for
higher-level inference and reasoning. For example, we could include occlusion and mo-
tion information in the classical perceptual organizationproblem of salient contour ex-
traction (which generally relies heavily on orientation estimates alone). We believe oc-
clusion information will also be useful for figure-ground segmentation, cueing for object
recognition, and other high-level computer vision tasks.
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