
Template patch driven image segmentation∗

Branislav Mičušı́k and Allan Hanbury
Pattern Recognition and Image Processing Group, Inst. of Computer

Aided Automation, Vienna University of Technology
Favoritenstr. 9/1832, A-1040 Vienna, Austria
{micusik,hanbury}@prip.tuwien.ac.at

Abstract

We present a method that partitions a single image into two layers, requiring
that one layer has similar properties in terms of pixel colour variation to a
provided template patch. First, the paper provides a new view on defining a
similarity function for a pixel with its small neighbourhood to be part of the
texture described by the template patch. This results in better description of
pixels near the texture boundary. Second, it is shown how the Maximally Sta-
ble Extremal Regions (MSERs), originally designed for wide baseline stereo
matching, can be used to locally merge pixels having the same intensity and
thus reduce the dimension of the graph representing the image. The MSERs
help in texture description and yield significant reduction of memory and
computation time. Finally the graph is fed into the min.cut/max.flow algo-
rithm to cut the graph into two parts. Performance of the method is presented
on some images from the Berkeley database. Finally, restrictions in using the
method are discussed.

1 Introduction
Fully automatic image segmentation is well known to be an ill-posed problem since there
is neither a clear definition nor an objective measure of a correct segmentation. As it
has been shown [10], people do not produce similar segmentations on the same images
without a specification of what should be segmented and how detailed the segmentation
should be.

It has been pointed out that for doing a semantically correct image segmentation it is
essential to take into account a priori information about objects being segmented. Such
information is usually provided

i) by the user through specifying background/foreground properties [14, 13, 4, 2], e.g.
through marking some pixels in the image, or

ii) by assuming that the object being segmented moves [18, 1, 7], or

iii) by learning of object properties, i.e. models, and their mutual relation and appear-
ance from a manually labeled training database [5, 17, 16]. In this case the image
segmentation and object recognition are done simultaneously.

∗This work was supported by the Austrian Science Foundation (FWF) under grant SESAME (P17189-N04),
and the European Union Network of Excellence MUSCLE (FP6-507752).

1

BMVC 2006 doi:10.5244/C.20.84

Figure 1: Three examples of segmentation of textured surfaces. Top row: input images.
Middle row: the template patches in detail. Bottom row: segmented regions having similar
properties to the template patch.

Without the above mentioned steps it is only possible to partition the image into re-
gions coherent in colour and texture which do not follow any semantic cues [15, 6, 12].
However, as psychophysics experiments have shown [19], at the beginning of the hu-
man procedure leading to scene understanding, some pre-segmentation using boundaries
and regions coherent in texture and colour is performed. Humans then use a huge object
database in their brains to tune the segmentation handling large occlusions, strong shad-
ows and geometric distortions. It implies that a rough pre-segmentation has to be done
before running any iterative recognition ↔ segmentation algorithm.

In this paper we focus on the first group of segmentation methods mentioned above,
where the objects/regions of attention are described in advance, in our case by a small
representative template patch. The patch is provided by a user or by any salient texture
detection method. Our proposed method segments an image into two layers where one
is similar to this patch in terms of pixel colour variation. The need for a background
template patch is omitted, which is an advantage compared to previous work [14, 4, 2].
By excluding the need for a background model we can use one foreground template patch
to search for the same object over many images even though the background changes.
However, compared to the most similar previous approaches [14, 3, 2], our method cannot
be viewed as a tool for doing an accurate manual segmentation driven by a user. Our
method is oriented towards being used in a chain leading to the automatic segmentation /
detection of an object described by the template patch.

The main contribution of this paper is twofold. First, we introduce a new view on
the similarity measure of an arbitrary pixel with its small neighbourhood to be part of the
foreground. This measure performs better on the boundary between the foreground and
background regions compared to standard approaches. Currently the measure is based
on the colour variation of pixels which may fail in some cases discussed later. However,

2

F

B

PSfrag replacements

RB|q

RF |q

q

r

Wq,r

edge cost region
{q,r} Wq,r {q,r} ∈ N

{q,F} λ RF |q ∀q
{q,B} λ RB|q ∀q

Figure 2: Left: Graph representation for a 9 pixel image and a table defining the costs of
graph edges. Symbols are explained in the text. The tuning parameter λ was set to 0.1.

what is important is the way in which the measure is formulated. Adding other features
can be done in a similar way. Second, we show how Maximally Stable Extremal Regions
(MSERs) [11], originally designed for wide baseline stereo, can be used to merge together
pixels having the same intensity. This reduces the size of the graph built on the image and
contributes to better handling of textures.

The structure of the paper is as follows. First, the problem is formulated in Sec. 2.
Then the building of the graph, highlighting the difference to other approaches, is de-
scribed in Sec. 3. The final algorithm is summarized in Sec. 4 and some results are given
in Sec. 5. Finally, discussion of restrictions in the use of the method and the conclusion
complete the paper.

2 Problem formulation
Many segmentation methods are based on minimization of the well-known Gibbs [4, 2,
12, 16] or another type of energy [1, 13, 6, 17]. The form of the energy is not so significant.
The energy usually consists of variously encoded data and a smoothness term which keeps
the segmentation consistent. In the following we use the Gibbs energy to formulate the
segmentation problem.

Suppose that the image is a graph G = 〈V ,E 〉, where V is a set of all vertices and E

is a set of all edges connecting adjacent vertices. The Gibbs energy of the segmentation x
is

E(x) = ∑
i∈V

Edata(xi,zi)+λ ∑
(i, j)∈E

Esmooth(xi,x j,zi,z j), (1)

where x = (x0,x1, . . .)
> corresponds to a vector with label xi for each vertex. We con-

centrate on a bi-layer segmentation where the label xi is either 0 (background) or 1 (fore-
ground). zi corresponds to the measurement in the i-th graph vertex, e.g. to a 3 colour
vector. λ is a weighting constant controlling the influence of the smoothness term. The
smoothness term describes how strongly neighbourhood pixels are bound together. It is
usually set using an Ising prior, or better as a colour gradient [4, 2, 16] or colour+texture
gradient [12] between adjacent pixels having different labels. The data term describes
how likely the pixel is part of the foreground or the background.

3

An optimal segmentation is obtained as a minimum of the energy E(x) over all pos-
sible x, i.e. E∗ = argminx E(x). The minimization problem is equivalent to searching for
the minimum cut or maximum flow in the graph [3], see Fig. 2, splitting the graph into
two parts. There exists an efficient algorithm for finding the min.cut/max.flow [4] which
is also used in our proposed method.

Usually the vertices of the graph correspond to pixels in the image and edges connect
adjacent pixels in some local neighbourhood. However, in our case one to one corre-
spondence between pixels and graph vertices is violated as pixels in each MSER [11] are
assigned just to one vertex, described later.

It has been pointed out that what mostly matters in segmentation methods is the form
(model) of the data term and not really the strategy for obtaining the segmentation, i.e.
whether the segmentation is found by searching for the min. cut in the graph [3], minimum
of some energies [1, 17], or optimal Geodetic Active Region [13].

3 Constructing the graph
Fig. 2 shows the graph used here which is split by the min. cut/max. flow algorithm to
obtain the final segmentation [4]. In this section we explain the difference in construction
of the graph and setting the data term compared to standard approaches.

3.1 Graph contraction
Assigning each image pixel to a different node in a graph leads to a large graph which is
very impractical for two reasons: i) the large memory consumption, ii) longer computa-
tion time of operations done on the graph, e.g. min. cut. Standard approaches reduce the
size of the image to keep the graph dimension within reasonable bounds. However, this
the operation destroys details in the image, specially texture structures.

We take a different approach. We do not reduce the size of the image but we merge
pixels having similar colours. As we need edges in the image to be preserved we found
MSERs [11] to be suitable technique for this purpose. The MSERs are the regions which
are stable across multiple thresholds during thresholding of the image from minimum to
maximum intensity and vice versa. The edges in the image are usually the boundaries of
the regions and therefore are not lost by merging the pixels into regions. Using MSERs
has an advantage compared to doing, e.g., watershed on the input image [8], since we
compress only places in the image where it is possible. Where there are no regions we
leave pixels alone and assign individual nodes to them in the graph.

Fig. 3 shows an example of detected MSERs in the leopard image and depicts the
principle of graph node reduction. All pixels lying in one MSER are merged to one node
in the graph, preserving all edges except for edges inside the MSER. The edges inside the
MSERs would create self-loops at the contracted node. In our approach we neglect the
self-loops.

Producing MSERs, i.e. image thresholding, preserves the relation Rt ⊆Rt+1, where Rt ,
resp. Rt+1 is the set of all pixels inside a region at level t, resp. (t +1) of the thresholding.
This is an important property which is used in situations where a larger region contains
smaller one. In such situations pixels in the smaller region are assigned to an own node in
the graph and the pixels lying in the larger region but not in the smaller one are assigned
to another own node.

4

(a) (b) (c)

Figure 3: Graph contraction. (a) The leopard image with MSERs superimposed. (b) An
illustration of an image cutout in standard regular grid representation. Two gray polygons
correspond to the MSERs. (c) The contracted graph from (b) taking into account MSERs
and 4-point connectivity.

3.2 Smoothness term
We use 4-point connectivity in the illustration shown in Fig. 3, however, more general
neighbourhoods can be used. In our implementation we compute the distance transform
on each region and take neighbours within a pre-defined distance controlling the size of
the neighbourhood. The distance 1 corresponds to a 4-point neighbourhood, 1.5 to an
8-point neighbourhood, the distances larger than 2 correspond to non-planar graphs. We
have used 1.5.

Generally, larger neighbourhoods contribute to better stability of the segmentation in
terms of smoothness, however, it is more memory and computationally demanding. In
our case, a large neighbourhood is not required, since the MSERs cover pixels in a larger
area. Thus in essence a larger area than the 8-point neighbourhood used for creating graph
edges is captured. Moreover, pre-merging of pixels with the same intensities into MSERs
reduces redundant edges. The most important edges for segmentation are those which
connect pixels with different colours. Such edges are preserved by the contraction step.

The smoothness term between two adjacent nodes q, r is computed using the Eu-
clidean distance in the CIELab colour space similarly to [3] as

Wq,r = exp(−γ‖zq − zr‖
2), (2)

where γ is a tuning parameter (0.5 in our implementation). zq is the colour vector at node
q. When the node represents a region, zq is the mean colour of pixels assigned to the
region q.

The problem arising after graph contraction is that one node representing an MSER
can have many more edges than a node corresponding to a single pixel, see Fig. 3(c). It
may cause the sum of weights of all edges going from the node to be too large to be cut
out from pixels in the surroundings even though it would correspond to another label. We
solved this problem by normalizing the weights on edges. We divide all edge weights
going from one node to sum to 1, i.e. ∑r∈N Wq,r = 1. By this we obtain an oriented graph
which indirectly takes into account the number of neighbours. The normalization has led

5

to better performance as experiments have shown.

3.3 Data term
The form and setting of the data term is the most important for segmentation consistency.
Usually for the description of the background and the foreground region either parametric
(Gaussian Mixture Model (GMM) on the colour histogram [2]) or non-parametric (whole
colour histograms [3, 12]) models both built from pixels marked as the background and
the foreground, is employed. In this work we avoid the use of histograms for describing
the background or the foreground and propose a new strategy.

We assume that a query patch containing colour and structure of interest is provided.
Typically, in similar approaches, the feature vectors are created at some interest points in
a query texture and an input image. Then feature vectors are compared crosswise to find
potential matches. Depending on the number of established matches it is decided whether
the query texture occurs in the input image or not.

The problem of standard approaches is that the feature vectors, e.g. well known
SIFTs [9] or many others, are computed in a small neighbourhood around the pixel.
It means that for pixels near the boundary of a texture the feature vector is affected by
the background pixels. This may lead to poor matching or inappropriate setting of the
probability that the particular pixel belongs to the texture described by the query patch.
Moreover, we need evaluate the measure on each pixel and not just at pixels of interest.
To cope with this we design the following strategy.

The penalty of the pixel being foreground is defined as follows

RF |q = exp(−α f (zq,T)),

RB|q = 1−RF |q, (3)

where the T represents a provided template patch, f refers to a similarity function, and α
is a tuning parameter discussed later.

The MSERs are detected in the template patch and, as for the input image, pixels
inside the MSERs are merged together. Let NT denote the number of all nodes in the tem-
plate patch. At each i-th node we build a feature vector composed of three sub-features,
i.e. ti, tmin

i , tmax
i . In our case the vectors are the 3-element colour vectors expressed in

CIELab colour space. ti corresponds to the colour of the pixel (or mean of the colours of
pixels inside a region), tmin

i = argmint j , j∈Ci ‖t j − ti‖2, and tmax
i = argmaxt j , j∈Ci ‖t j − ti‖2.

Ci is some local neighbourhood around i-th node. We take a circle with some pre-defined
radius (8 pixels in our case) around the i-th point or region. We can pre-compute the fea-
ture vectors for the whole template patch. We then cluster feature vectors which are close
enough in terms of Euclidean distance in the colour space. For an arbitrary point zq we
can formulate the similarity function of the point being foreground as the following

f (zq,T) = min
1<i<N′

T

(

β‖ti− zq‖
2 + min

j∈Cq
‖tmin

i − z j‖
2 + min

j∈Cq
‖tmax

i − z j‖
2
)

/ci, (4)

where ci is the number of vectors belonging to the same cluster, N ′
T is number of clusters,

and β is a constant controlling the influence of similarity between nodes (we use 20,
obtained by experiment). We solve this minimization problem by brute force at each
graph node q.

6

Figure 4: Texture description. Left: Texture with an example of circle C at a point near
the texture boundary. Right: A texture patch with three most representative points.

Eq. (4) says that we look in area C around the given pixel/region in the input image for
the points being closest to min/max points stored in a template patch feature vector. By
this strategy, part of the circle in the input image may come from the background region
and even then, on the remaining part of the circle, min/max colours closest to one of the
template feature vectors can still be found, see Fig. 4. Such a strategy guarantees better
performance than to compute features at each node in the input image and then compare
them crosswise to template features as most techniques do.

4 Algorithm
We shortly summarize all the steps leading to the final image segmentation:

1. Find MSERs1 in the input image, create an oriented graph respecting weights Wq,r
given by Eq. (2) and perform further normalization so that the sum of outgoing
edges is 1.

2. Find MSERs in the template patch and pre-compute feature vectors ti, tmin
i , tmax

i at
each node. Cluster the feature vectors to obtain the most representative ones with
weights ci.

3. Process all nodes in the input image graph by searching for the closest template
feature vector, i.e. evaluate the similarity function f (.) in Eq. (4). and set the data
term as the penalties RF |q, RB|q in Eq. (3).

4. Find the final segmentation by searching for min. cut/max. flow in the constructed
graph by the algorithm [4].

5 Experiments
We performed tests on images in the Berkeley dataset2, see some results in Fig. 5. Even
though the formulation of the data term is simple it returns reasonable results. Usually
the textures are composed of colour changes contributing to good performance of the
proposed data term. The situation in which the method fails is when different textures
with different structure but the same colours are in the image, see Fig. 5 (last row). This

1http://www.robots.ox.ac.uk/∼vgg/research/affine/
2http://www.cs.berkeley.edu/projects/vision/grouping/segbench

7

directly follows from the definition of the similarity function in Eq. (4). To solve this
problem, features other than simple colour changes would also have to be taken into
account, see discussion in Sec. 6.

The final segmentation is very sensitive to the parameter α in Eq. (3) due to poor
formulation of RB|q in Eq. (3). The reason is that we have no information about the
background. We set α = 〈 f (z,T)〉

10 where 〈. . .〉 is the expectation over all edges joining F
(foreground) node. Sometimes better segmentation can be obtained by slightly changing
this value. Fig. 5 shows both automatically obtained and manually tuned segmentations.
However, it is an open issue to obtain the correct value of α fully automatically.

The method is relatively slow since many simple comparisons are required (it would
be possible to run it on GPU instead of CPU). Our current implementation takes 40-60s
on 321×481 pixel images on a Pentium 4@2.8GHz using a not very optimized Matlab/C
implementation.

6 Discussion
The are two major issues of the proposed strategy which are the topics of our current
ongoing research: affine and illumination/colour invariance. We use the same circle for
computing feature vectors in the template patch and the same large circle for searching
for closest min/max values, Eq. (4). This may be done in a more clever way, e.g. by trying
more circles or changing circles to ellipses to get affine invariance. However, it would
increase computation time, which is already too high. Some trade-off has to be accepted.

To increase illumination/colour invariance, features other than colour differences have
to be taken into account, e.g. gradient magnitude/orientation or scale-space searching at
the pixel/region neighbourhood.

7 Conclusion
We have presented a method for a detection / segmentation of the regions in the input im-
age defined by a provided template patch. We have introduced the use of MSERs in graph
construction to decrease the dimensionality of the graph and to get a better representation
of the image. We have designed a new data term used in a minimization process leading
to a final segmentation. The main novelty is in the formulation of the data term enabling
the suppression of the influence of the background on segmentations of points near the
foreground / background boundary. The method still requires further features other than
colour similarity. Even though the features are relatively simple the method performs well
on most of the images.

References
[1] N. Apostoloff and A. Fitzgibbon. Bayesian video matting using learnt image priors.

In Proc. CVPR, pages I:407–414, 2004.

[2] A. Blake, C. Rother, M. Brown, P. Perez, and P. S. Torr. Interactive image seg-
mentation using an adaptive GMMRF model. In Proc. ECCV, pages I: 428–441,
2004.

8

[3] Y. Boykov and M.-P. Jolly. Interactive graph cuts for optimal boundary & region
segmentation of objects in N-D images. In Proc. ICCV, pages 105–112, 2001.

[4] Y. Boykov and V. Kolmogorov. An experimental comparison of min-cut/max-flow
algorithms for energy minimization in vision. PAMI, 26(9):1124–1137, 2004.

[5] P. Carbonetto, N. de Freitas, and K. Barnard. A statistical model for general contex-
tual object recognition. In Proc. ECCV, pages 350–362, 2004.

[6] C. Fowlkes, D. Martin, and J. Malik. Learning affinity functions for image seg-
mentation: Combining patch-based and gradient-based approaches. In Proc. CVPR,
pages II: 54–61, 2003.

[7] V. Kolmogorov, A. Criminisi, A. Blake, G. Cross, and C. Rother. Probabilistic fusion
of stereo with color and contrast for bi-layer segmentation. PAMI, 2006. to appear.

[8] Y. Li, J. Sun, C.-K. Tang, and H.-Y. Shum. Lazy snapping. ACM Transactions on
Graphics (SIGGRAPH), 23(3):303–308, 2004.

[9] D. G. Lowe. Distinctive image features from scale-invariant keypoints. IJCV,
60(2):91–110, 2004.

[10] D. Martin, Ch. Fowlkes, D. Tal, and J. Malik. A database of human segmented natu-
ral images and its application to evaluating segmentation algorithms and measuring
ecological statistics. In Proc. ICCV, pages 416–425, 2001.

[11] J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust wide baseline stereo from
maximally stable extremal regions. In Proc. BMVC, pages I: 384–393, 2002.

[12] B. Mičušı́k and A. Hanbury. Automatic image segmentation by positioning a seed.
In Proc. ECCV, pages II: 468–480, 2006.

[13] N. Paragios and R. Deriche. Geodesic active regions and level set methods for
supervised texture segmentation. IJCV, 46(3):223–247, 2002.

[14] M. Ruzon and C. Tomasi. Alpha estimation in natural images. In Proc. CVPR, pages
I:18–25, 2000.

[15] J. Shi and J. Malik. Normalized cuts and image segmentation. PAMI, 22(8):888–
905, 2000.

[16] J. Shotton, J. Winn, C. Rother, and A. Criminisi. TextonBoost: Joint appearance,
shape and context modeling for multi-class object recognition and segmentation. In
Proc. ECCV, pages I: 1–15, 2006.

[17] Z. Tu, X. Chen, A.L. Yuille, and S.C. Zhu. Image parsing: Unifying segmentation,
detection, and recognition. IJCV, 63(2):113–140, 2005.

[18] Y. Wexler, A. Fitzgibbon, and A. Zisserman. Bayesian estimation of layers from
multiple images. In Proc. ECCV, pages III: 487–501, 2002.

[19] S. Wolfson and M. Landy. Examining edge- and region-based texture analysis mech-
anisms. Vision Research, 38(3):439–446, 1998.

9

Figure 5: Results. 1st column: Input colour images. 2nd column: Provided template
patches. 3rd column: Automatic segmentation results. 4th column: Manually tuned seg-
mentations through parameter α in Eq. (3).

10

