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Abstract

This paper describes and evaluates a novel set of approaches to handle situa-
tions where multiple distinct and visually differing objects are tracked, such
as tracking of people and objects they are manipulating. Unlike tracking of
multiple similar objects, visually different interacting objects can provide an
opportunity to improve the tracking accuracy. These approaches are designed
for use with Condensation/Particle Filter based algorithms, and allow drop-in
replacement of tracker modules for each object type tracked. They use infor-
mation about the relationships and interactions between objects to improve
the tracking, rather than in order to distinguish between the objects, as in cur-
rent algorithms. They are also designed to be highly efficient, for real time
use. The approaches are tested on a challenging set of real data and achieve
tracking performance similar to using a single very high dimensional tracker,
but with vastly reduced complexity and hence much better time performance.

1 Introduction
The Condensation[4] algorithm is commonly used for single object tracking in video
sequences. There are many generalizations of the algorithm to cope with the tracking
of multiple similar objects[3, 5, 6]. These attempt to disambiguate the multiple objects,
to allow association between each particular object over multiple frame sequences and to
maintain tracking of the full set of objects. This paper addresses the class of situations
where multiple distinct and visually differing objects are tracked at the same time, such
as players balls and rackets etc. in games, or tracking of people manipulating objects.
In these situations, interaction between objects, rather than being a problem, creates an
opportunity to improve the tracking accuracy for the individual objects.

There are two main ways of extending single object tracking to tracking multiple ob-
jects, the first is to use a single object tracker which tracks over a multi-dimensional space
representing the combined state of all objects tracked. This approach has serious perfor-
mance problems, due to the high dimensionality of the tracking space. Ways to overcome
this have been suggested[2], but these are still complex and performance intensive.

The second method of tracking multiple objects is to use a single tracker per object,
and to add some way of taking the dependencies between the objects into account. This
paper investigates various methods for taking these dependencies into account, without
significantly increasing the complexity of the multiple object tracking process, in order to
develop real-time suitable tracking methods for tracking multiple interacting objects. It
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is possible to make use of the difference between objects in a way that current multiple
tracking algorithms are not able to, thus allowing for a more efficient and accurate tracking
process.

1.1 Existing Work
The Condensation algorithm is commonly used to detect object position from video data[4].
It uses a large number of particles each storing a single hypothesis about the possible state
of the object, and an observation of the input data.

The model works in four stages. Firstly, each particle is scored as to how well it fits
the observation data. From this set of scored particles, a new set of particles with the same
number of elements as the current set is generated. This is generated by weighted random
sampling, based on the score of each particle, so some high scoring hypotheses may be
chosen multiple times and some hypotheses may not be propagated into the new set at all.
After this sampling stage, the new set of items is subjected to drift, which uses a motion
model to predict how this particle will have moved since the last frame, and diffusion,
which adds a certain amount of randomness. This predicts a new position for the particle.
Finally, in the measurement phase, each particle in the new set is scored against the video
frame. An estimate of the current position of the object is derived from this set, usually
by using a weighted mean.

There are several extensions of Condensation to multiple tracking of similar objects
which effectively use a single tracker per object tracked. Khan et al.[5] use Markov Ran-
dom Fields to model the interaction between several ants they are tracking. At points
when the ants are far away from each other, their method works as a set of standard
particle filters. Similarly, various methods, eg.[3, 9, 10], use one multi-modal particle
distribution for all objects. These essentially try to solve the data association problem
of how to assign observations to individual objects and to maintain the modality of the
particle distribution when objects interact. These methods are not generally useful when
objects are visually distinct, as the association problem does not exist.

Han et al.[2] represent the state of two tracked objects within one high dimensional
particle, but store Gaussians representing the modes in the distribution, rather than indi-
vidual point particles. This reduces the number of particles required for tracking in high
dimensional spaces. However, while this increases efficiency, it is still exponential in the
number of objects, and only increases the number of dimensions it is possible to track,
rather than avoiding the underlying problems of using a high dimensional state to track
multiple objects. This means it still requires large numbers of particles in order to track
complex systems with more than two interacting objects. It is also inefficient at points
when objects are not currently interacting, and could be tracked equally well individually.
Wu et al.’s co-inference tracking[11] uses multiple cues in tracking a single object, how-
ever this does not simply extend to use multiple different objects as cues, as the cues do
not always reinforce each other and the method fails.

1.2 The Example Tracking System
Situations where this kind of tracking occurs include tracking players and balls in sport[12],
and tracking people manipulating objects during stroke rehabilitation[1]. A system track-
ing a person juggling is used here as an algorithm test-bed. Juggling, provides a challeng-
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ing tracking situation, with a lot of interaction between the fast moving balls and hands,
but is easy to set up and control. This uses three different trackers, all of which work
based on the detection of particular colours and shapes in the image. The face tracker
keeps track of the position of the persons face in order to determine where the centre-line
between the two shoulders is located. The arm tracker detects two arms, on either side of
this line. Finally the ball tracker detects the number, positions and velocity of multiple
balls and tries to detect whether they are currently held by the juggler, or are in the air.

2 The Problem
It would be ideal to use a single Condensation tracker in which at time t each particle
holds the combined state of a set of K objects Ob ject1...K . This tracker uses a scoring
function to calculate a probability for a combined state Xt = {X1

t ,X2
t ...,XK

t }, based on an
observation Zt , i.e. P(X1

t ∩X2
t ...∩XK

t |Zt).
It is desirable to approximate this single tracker with a set of individual trackers, with

state vectors X1, ...,XK . The state space for each tracker will have a significantly lower
number of dimensions than the single tracker and hence will require smaller numbers of
particles to achieve the same tracking performance. However, the objects are not indepen-
dent, so using completely independent trackers, without tracking the interactions between
the objects, would fail to exploit the available information. Given this fact, the probabili-
ties being calculated for tracker k must approximate P

(
Xk

t |X1
t ∩X2

t ...Xk−1
t ∩Xk+1

t ..XK
t ,Zt

)
.

It is not possible to directly calculate these conditional probabilities for each particle, as
this would involve effectively calculating a high-dimensional tracker.

2.1 The Proposed Solution
The interactions affecting object X1, based on X2..K are considered here, as the algorithm
is identical for other objects.

2.1.1 Definitions

X1..K
t This is a set of random variables that represent the part of the Xk which

has an effect on the other X states. They are based on the value of each
of the X states from the previous frame by using the prediction
function inherent in the particle filter. Xk

t is only dependent on Xk
t−1,

and is assumed conditionally independent of the observation and the
other X variables. They are parameterized in a multi-dimensional
space, which is discrete, or may be discretised.

f1..K(x) This is the probability density function of Xk
t |Xk

t−1, and must be
computationally simple to calculate given a particular Xk state.

Ek(Xk) This is the region of the Xk space where a given Xk has an effect. i.e.
x /∈ Ek(Xk) =⇒ P(Xk = x|Xk) = 0, for a given Xk

R1,k(X1) P(X1|Xk) is dependent on only the region of Xk space defined by this
function, i.e. for any given X1, if x /∈ R1,k(X1) then
P(X1|Xk = x) = P(X1|X1 /∈ R1,k(X1)), which is constant for that X1

T k This is an overall region containing all points where P(Xk
t |Xk) may be

non zero for all Xk. i.e. it is the union of all possible Ek regions.
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2.1.2 Algorithm

Taking the ideal tracker, with particle score equal to P(X1
t ∩X2

t ...∩XK
t |Zt) = P(X2...∩

XK |Z)P(X1
t |X2

t ...∩XK
t ,Zt), it is assumed that the states of the variables X2..Kfor the pre-

vious frame are known, and the score P(X1
t |X2...∩XK ,Z) is to be calculated. This score

can be rewritten in terms of X2..K
t , and as these are independent, in terms of f1..K :

P(X1
t |X2

t ...∩XK
t ,Z)≈

[
∑

{x2∈T2,...xK∈TK}

(
f2(x2)... fK(xK)P(X1

t |X2
t = x2...∩XK

t = xK ,Z)
)]

.

(1)
For two object interaction, this calculation is simple enough, however, for multiple

object interaction, further simplification is required to avoid the combinatorial nature of
this equation. An assumption is made that P(X1|X2

t , ...XK
t ) can be aproximated using

a function of the pairwise interactions. For example, in the test tracker, the interaction
function:

P(A|F,B1, ...,BC,Z)≈ [P(A|F,Z)]

[
∑
1..C

P(A|Bc,Z)
C

]
, (2)

where A=arm position,F=face position,Bc=cth ball position(of C balls), is used to score
the arm. To use this approximation, Equation 1 is calculated for each two object case
included in the equation. This approximation in terms of pairwise interactions has been
shown to be relatively efficient in testing. For the rest of this section only pairwise inter-
actions are considered, between X1 and X2.

By definition, P(X1|X2) only needs to be evaluated within R1,2 so

P(X1|X2,Z)≈ ∑
x2∈R1,2

(
f2(x2)P(X1|X2 = x2,Z)

)
+ ∑

x2 /∈R1,2

(
f2(x2)P(X1|X2 /∈ R1,2,Z)

)
.

(3)
As P(X1|X2 /∈ R1,2,Z) is not dependent on x2, and thus can be taken outside the sum,
and f2 must sum to one, the dependency on values of f2 outside of R1,2 may be removed,
giving

P(X1|X2,Z)≈ ∑
x2∈R1,2

(
f2(x2)P(X1|X2 = x2,Z)

)
+P(X1|X2 /∈R1,2,Z)

(
1− ∑

x2∈R1,2

f2(x2)

)
.

(4)
This is used as the input to the interaction function. Similar inputs are created for

other interactions between the objects. In many cases, certain objects will be independent
of others, in which case they will not be in the interaction function, and hence not require
calculation. For example, in the test system the face tracker is independent, so does not
require any extra inputs to be calculated in its interaction function. However, this does
not directly allow the creation of a set of trackers as the f1...K pdfs rely on the state of
individual particles, an approximation to the distribution of the f2..K values must be used
as input to the X1 tracker, giving a two step process:

1. Calculate probabilities for all X1..K particles based on the observation data and f1..K
generated from the previous frame.

2. Calculate next frame P(Xk|Xk) and the pdfs fk for all particles and construct ap-
proximations to the distributions of the pdfs, weighted by particle probability.
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2.2 Calculating the Approximate Distribution
It is important that an efficient way of calculating and storing these distributions be used.
Otherwise, no efficiency will be gained over the higher dimensional calculation. Three
ways of calculating and storing the intermediate distributions of f1..K are described here.

2.2.1 Gaussian Mixtures

This method attempts to approximate the overall state of the f1..K functions by using a
set of N Gaussians for each pdf, representing the mean values of f1..K at each position,
weighted by the particle score. First the generated probabilities P(Xk|Xk) are partitioned
spatially, then their contribution to a single Gaussian for each partition can be estimated
using an unbiased Maximum Likelihood Estimator. In the example system it is possible to
generate these Gaussians directly from the Xk states and P(Xk|Z) values without actually
calculating all the fk values at any point.

Samples from these Gaussians are used as input to the scoring function instead of
sampling fn. The sum of all Gaussians at position x is used as an estimate of the pdf at
that position, and hence a pairwise score function is created as:

∑
x∈R1,2

(
P(X1|X2 = x,Z) ∑

n∈1..N
[Gn(x)]

)
+P(X1|X2 /∈ R1,2,Z)

(
1− ∑

x∈R1,2
∑

n∈1..N
[Gn(x)]

)
.

(5)
The information from the Gaussians as to the distribution means that the calculation of

this sum may be simplified to avoid having to calculate a large number of Gaussian values,
by either using a single Gaussian sample as an estimate, or using the Gaussian distribution
parameters directly. In this way, it is possible to avoid calculating many values from the
Gaussians, making this technique relatively efficient.

This technique has advantages, in that the Gaussians are easily calculated and can be
used directly in the second stage. However, it reduces the usefulness of the Condensation
algorithm itself, as the modality of the data is reduced to the number of Gaussians used in
the partitioning stage. It may be possible to detect when this is occurring, by detecting that
a Gaussian with a large variance is being created, and thus split a partition automatically,
however, this did not seem reliable in testing.

2.2.2 Sampling

For each X1 state, a state from X2, or a small set of states is sampled, to use as input to the
X1 state. This is done by using a probabilistic sampling stage similar to the Condensation
sampling stage. The test system makes use of the Condensation sampling stage, by sam-
pling uniformly from the distribution created by the sampling stage of the Condensation
algorithm, thus avoiding doing two similar sampling stages. This method is appealing in
that it uses a method very similar to the Condensation algorithm, and potentially allows
for a full representation of the modality of the data. It is also the most simple conceptually
of the methods described. A set of 10 states was used for the test version of this, as using
higher numbers of states was too slow for real time use.

5



2.2.3 Mean Probability Density Functions

This combines aspects of the two methods above, to create a technique that allows multi-
modality, but also allows all X2 states to influence the result, unlike the sampling method.
Instead of partitioning the particles as in the Gaussian model, a uniform partitioning over
a fixed grid is used. At each point, the weighted mean of all the f2 values is calculated:

M[x] =
∑1..count(particles) P(X2

t−1[particle]|Zt−1)P(X2
t = x|X2

t−1[particle])

∑1..count(particles) P(X2
t−1[particle]|Z)

. (6)

The X tracker can then use M[x] as input to its scoring function, defined as

P(X1|X2,Z)≈ ∑
x∈R1,2

P(X1|X2 = x,Z)M[x]+P(X1|X2 /∈ R1,2,Z)

(
1− ∑

x∈R1,2

M[x]

)
. (7)

The values of M[x] are the same over all particles, thus given that P(X |X) > 0 only within
a fixed range, all possible values of M[x] can be precalculated. An extra stage in the
Condensation algorithm is used to calculate M. This can be done by using a matrix to
accumulate probability values for each X particle. For this to work efficiently, E2(X2)
and R1,2(X1) must be relatively localised for states X1 and X2, so that each particle does
not have to add to or read many accumulators. The process for each tracker is now:

1. Calculate tracker, using M[x] matrices in scoring function.

2. Calculate the M[x] matrix based on Xk distribution.

This is slightly less time efficient than using a small number of Gaussian mixtures. How-
ever, it can more accurately represent the distribution of the particles, thus making it work
much better in situations where tracker distribution is noisy and the tracker is tracking
several modes in the observation data.

2.3 Extensions
In the worst case scenario, all K objects will interact with each other. This will require
K intermediate representations to be written, one per object, and K−1 to be read in each
scoring function. There will still be a vastly smaller total number of particles compared to
the single tracker, and thus it will be far more efficient, especially for large K. However,
in many real cases optimisations will be possible where some objects are not affected by
others, such as in our head tracker, which does not take input from any other trackers. It is
also useful to use methods such as mixture tracking[10] within individual trackers, where
there are multiple objects of one type. If it is unlikely that the multiple similar objects
will overlap, or it is not relevant to the other scoring functions, a combined intermediate
representation, representing the sum of the object pdfs may be used, rather than using a
separate pdf for each object. This is the case in the ball and arm trackers described below.

In the case of juggling, the system is tracking balls, which are relatively predictable
except when interacting with the hands, and hands, which are much less predictable. It
is useful to reduce the reliance on the next frame predictions as much as possible for
the less predictable object. In this case, the output from the less predictable tracker is
used directly to create the probability density function, rather than using the next frame
prediction. This is likely to be useful in other similar situations where a human interacts
with one or more relatively predictable objects.
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3 Evaluation

3.1 Implementation Details
Only the mean pdf based tracker is described in depth here, the implementation was simi-
lar for other tracking methods. The juggling system makes extensive use of tracker inter-
action as shown in Figure 1.

Face Tracker This has particles defining face position, size and angle of an ellipse rep-
resenting the face shape. Each particle’s score is added to a pdf for each position in
the face ellipse, and normalized to create a representation of the distribution of the
likely face position.

Tracker pdf output Output

Face //
&&_ _ _ _ _ _�

�
�
�_ _ _ _ _ _

P(Face Pos)

��

hddiv
�

Face Position

Video Input

88qqqqqqqqqqq
//

&&MMMMMMMMMMM Arm //
&&_ _ _ _ _�

�
�
�_ _ _ _ _

P(Arm Pos)

��

hddiv
�

Arm Positions

Ball //
&&_ _ _ _ _�

�
�
�

_ _ _ _ _
P(Ball Pos)

RR

VZZVH
.

Ball Positions

Figure 1: Use of pdfs in the juggling tracker

a)Input Frame b)Next frame ball pdfs

c)Hand Position pdfs d)Output - Arm and Ball tracking

Figure 2: The tracker state for a single frame
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Arm Tracker When calculating a score for a particular arm position, this tracker disre-
gards areas of skin colour which are part of the face by using the face probability
map. Prior to this, the tracker was often misled by the face pixels. The arm tracker
also uses a ball position probability map generated by the ball tracker in the previ-
ous frame. This is because when a ball is stopped over, or heading towards the arm,
it generally defines the position of the hand. The arm tracker outputs a combined
pdf for both hands, giving the sum of the probabilities for the left or right hand be-
ing centred on a particular position, as in Figure 2c. (annotated to show the modes
of the left and right hand).

Ball Tracker This uses the pdfs generated by the arm tracker to detect caught balls.
This is both because the ‘caught/not caught’ status is a desired output, and be-
cause caught balls are often partly occluded by the hand, and may otherwise be lost
by the ball tracker, or inaccurately tracked. The position and velocity of the ball is
used to generate a combined pdf of the position of all balls in the next frame for the
arm tracker as in Figure 2b. Multiple balls are detected by use of a segmentation
algorithm on the output of the ball tracker, this segmentation is also used to ensure
that one ball does not take over all the particles, in similar way to Milstein et al.[8]

3.2 Testing Results
Testing was run using a Pentium 4 2.6GHz test machine. Up to 4000 particles in total
were used (3000 ball, 900 arm, 100 face), this number of particles allowed processing of
the video at approx 30 frames per second, on all interaction methods.

In order to compare against the ‘ideal’ tracker (as described in section 2) a single 20
dimensional particle filter was used. This was only able to track 1 ball (plus two arms and
a face), due to the vast number of particles required for multiple balls being too large to fit
in memory/disk space. This took several minutes per frame to run. A set of independent
particle filters, using only observation information were also used.

Three test sequences (available at http://www.mrl.nott.ac.uk/~jqm/juggling/bmvc) were
used, firstly a 500 frame sequence (plus 100 frames of initialisation), of 1 ball being
thrown from hand to hand, involving various complicated hand movements and different
throws, secondly a 1400 frame sequence of mainly 3 ball juggling, with a short section of
2 and 1 ball, and finally a set of 200 frame sequences of juggling up to 4 balls.

In this tracker, the desired output is whether a ball is caught, and its position. When
the balls are in flight and not nearing catch or release, all methods provide good tracking
performance. In situations where the ball is being caught or held, there were several
possible errors that occurred. These are defined as minor or serious, depending on their
effect on the data being collected. The tracker is able to automatically reinitialize after an
error and detect new objects, (it uses a small number of initialization particles, as in [7]),
so no manual reinitialization was required after an error.

Serious Errors A ball is lost and the tracker has to reinitialize. The tracker detects a
catch when no catch has occurred. A catch occurs and the tracker doesn’t notice it.

Minor Errors A ball is temporarily lost but re-tracked without reinitialization, which
may occur in some occlusion situations, and is not generally a problem for the
system. An arm fails to be tracked - this may cause other errors to occur, but
usually the next time a ball interacts with the missing arm, the tracker recovers.
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Tracker Type Particles 1 ball errors 3 Ball Errors
Minor Serious Minor Serious

Ideal 120,000 4 0 n/a n/a
1,000,000 2 0 n/a n/a

Independent 1,000 4 22 11 97
4,000 1 28 15 56

Gaussian 1,000 5 4 8 13
4,000 4 2 10 8

Sampling 1,000 8 2 14 11
4,000 5 1 15 7

Mean pdfs 1,000 2 4 10 7
4,000 2 0 5 4

Table 1: Comparative Tracker Performance

Using the one ball sequence, it was possible to compare the results from the ideal tracker
against the methods described in section 2.2. For the 3 ball sequence, only the relative
performance of the different types of tracker interaction could be compared. The testing
results are shown in Table 1. In the 1 ball test 1,000,000 ‘ideal’ particles were required in
order to achieve the power of 4000 particles using the best performing mean pdf method.
The independent trackers were very hard to tune in order to get a balance between false
catches and missed catches, hence the large number of serious errors shown, which are
mainly catch errors. Early attempts to fix these issues led to the algorithm presented here.

The best performing, pdf based tracker was also tested on the 200 frame sequences.
For these sequences a ground truth hand position for one hand was marked and the dis-
tance from this point to the tracker hand circle was measured for each frame. Figure 3,
shows for each number of balls, the percentage of frames within each error value, and the
mean error. This was interesting, as with no balls, the arm tracker was very poor. Once
balls were being juggled, the tracking accuracy went up greatly; also slightly improved
tracking was observed as higher numbers of balls were juggled. These results demonstrate
how the individual trackers are made more robust using feedback between the trackers.
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Figure 3: pdf based Arm tracker accuracy for different numbers of balls
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4 Conclusions
The results shown in this paper demonstrate that these methods can greatly improve the
tracking accuracy of individual object trackers. The final accuracy is similar to that of a
single high-dimensional tracker, and far better than independent trackers. The proposed
methods do not significantly increase the complexity, and hence perform only slightly
slower compared to completely independent trackers, allowing real time use of these
methods. This paper shows that where there are multiple visually distinct objects in a
scene, this is no data association problem. Rather, there is an opportunity to improve the
tracking performance for each individual object, to make it better than that of indepen-
dent trackers. In addition, the improved tracking due to the interactions allows the use of
simpler, faster individual trackers, as demonstrated by the very simple arm tracker, which
performs poorly standalone, but has much better performance when interactions are taken
into account.

These methods also offer a major advantage over existing algorithms in that they al-
low the use of individual trackers as black boxes, so that trackers for one class of object
can easily be modified without needing to alter other trackers. For example in this sys-
tem, several different versions of the arm and face trackers have been used, which may
just be swapped in, without altering the ball tracker. They are also highly generalisable,
and can be used in many situations where multiple trackers are used, simply by altering
measurement functions and creating functions to generate the intermediate probabilities.
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