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Abstract

Active Appearance Models [5] are widely used to match statistical models of
shape and appearance to new images rapidly. They work by finding model pa-
rameters which minimise the sum of squares of residual differences between
model and target image. Their efficiency is achieved by pre-computing the
Jacobian describing how the residuals are expected to change as the param-
eters vary. This leads to a method of predicting the positionof the minima
based on a single measurement of the residuals (though in practise the algo-
rithm is iterated to refine the estimate).

However, the estimate of the Jacobian from the training set will only be
an approximation for any given target image, and may be a poorone if the
target image is significantly different from the training images.

This paper describes a simple method of updating a representation of
the Jacobian as the search progresses. This allows us to tunethe AAM to
the current example. Though useful for matching to a single image, it is
particularly powerful when tracking objects through sequences, as it gives a
method of tuning the AAM as the search progresses. We demonstrate the
power of the technique on a variety of datasets.

1 Introduction

Active Appearance Models (AAMs) [5] are widely used to matchstatistical models of
shape and appearance to new images rapidly. Given a suitablyannotated set of example
images of a class of objects, we can construct statistical models of their shape and their
patterns of intensity (texture) [5]. Such models can reconstruct synthetic images using
small numbers of parameters. The AAM algorithm is an efficient method of estimating
the parameters of the model which synthesize an image as close as possible to a new target
image - it matches the model to the image.

Fast matching is achieved by assuming that the relationshipbetween the residual dif-
ferences and the parameter displacements is linear, with a Jacobian which can be esti-
mated in advance from the training set. A good estimate of thebest dispacement to make
can be computed by a simple matrix multiplication of the current residual vector (see
below for details).

However, the assumption that the Jacobian is fixed is only an approximation, which
can lead to poor convergence for some images, especially those significantly different
from the model mean.
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The key idea in this paper is that each time we re-compute the residuals during AAM
search we obtain information which can be used to update our estimate of the Jacobian.
This makes subsequent iterations more likely to converge quickly and accurately, as the
Jacobian becomes ‘tuned’ to the current image data. The resulting search algorithm turns
out to have an elegant form, requiring only a series of simplelinear operations. These are
straightforward to add to any existing AAM implementation,with only a modest increase
in computational cost.

The approach is closely related to the quasi-Newton methodsfor solving least squares
problems without derivatives developed by Broyden [2].

The algorithm is also well suited to tracking applications,as it can tune an initial
generic AAM to the image sequence as tracking progresses.

In the following we will give an overview of the original AAM approach and related
literature. We will outline the derivation of the updating algorithm, and demonstrate how
it can be implemented using fast rank-1 updates. We then showresults of an extensive
series of experiments on several databases of face images, demonstrating that the new
algorithm is more accurate, robust and stable than the original AAM.

2 Active Appearance Models

2.1 Statistical Appearance Models

Statistical appearance models are generated by combining amodel of shape variation with
a model of the texture variation [8, 3].

An appearance model has parameters,c, controlling the shape,x, and texture,g, (in the
model frame) according to

x = x̄+Qsc
g = ḡ+Qgc

(1)

wherex̄ is the mean shape,̄g the mean texture in a mean shaped patch andQs,Qg are
matrices describing the modes of variation derived from thetraining set.

A shape in the image frame,X, can be generated by applying a suitable global trans-
formation (such as a similarity transformation) to the points in the model frame. The
texture in the image frame is generated by applying a scalingand offset to the intensities
generated in the model frame.

A full reconstruction is given by generating the texture in amean shaped patch, then
warping it so that the model points lie on the image points,X.

2.2 Interpretation through synthesis

The AAM seeks to minimise a sum-of-squares problem of the form

F(p) = |r(p)|2 = rT r (2)

wherep contains thet model parameters (the appearance parametersc, together with
global pose parameters - see [5]), andr = r(p) is a function returning then residual
differences between model and data for parametersp.
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Suppose we evaluate the residual atp, with r = r(p). To a first order approximation
(using a Taylor series), nearp we have

r(p+dp) = r +Jdp (3)

whereJ is the (nxt) Jacobian ofr(p) (Ji j = ∂ r i
∂x j

).

In this case

F(p+dp) = (Jdp+ r)T(Jdp+ r)
= dpTJTJdp+2dpTJT r +const

(4)

Differentiating w.r.t.p gives gradient

0.5
∂F
∂p

= (JTJ)dp+JT r (5)

and equating the gradient to zero to find the minimum, gives

(JTJ)dp =−JT r (6)

Thus by solving Equation 6 we can find the displacement,dp, from the current posi-
tion,p, to take us to the minimum. The key to the efficiency of the AAM is the assumption
thatJ is constant and can be estimated from the training set asJ0. The solution to Eq.6 is
then given by the matrix multiplicationdp = −Rr whereR is the Pseudo-inverse ofJ0,
R = (JT

0 J0)
−1J0.

This leads to the basic AAM search algorithm as follows:

Basic AAM Algorithm
Initialise: Setp0, r0 = r(p0), s= 0, kt = 0.125
Loop: 1) dps =−Rrs

2) k = 1.0
3) ps+1 = Update(ps,kdps)
4) rs+1 = r(ps+1)
5) if |rs+1|2 > |rs|2 andk > kt

thenk = 0.5k, go to step 3
6) s=s+1

Until k < kt or s> smax

The function ’Update’ updates the current estimate of the parameters. Though the
combined parametersc are usually updated linearly,c→ c+ dc, the global pose should
be updated by composition - see [5]. Matthews and Baker [11] demonstrate that ideally
the shape parameters should also be composed, but this isn’talways possible.

In practise the algorithm is run in a multi-resolution framework. Note that steps 3-5
implement a crude line search, which can be replaced by a moresophisticated approach.
The updating method described below automatically incorporates an efficient line search
mechanism implicitly.1

1We have implemented more sophisticated line searches. Though they can give modest improvements to the
basic AAM in some cases, results are a little ambiguous, and they too are outperformed by the new updating
algorithm.
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2.3 AAM Variants

The AAMs have been widely adopted, and many applications andmodifications sug-
gested. Notable amongst these are the Shape-AAMs [4], in which the algorithm drives
the shape parameters rather than the appearance parameters, the Inverse-Compositional
AAMs [11], in which it is demonstrated that the shape update should be implemented as
a composition rather than a simple linear addition, the use of non-linear texture features
rather than normalised intensities [10], the use of robust approaches to deal with occlusion
efficiently [9] and various natural extensions to 3D.

Bataur and Hayes [1] have also observed that the assumption that the Jacobian is fixed
is unsatisfactory, and proposed Adaptive AAMs, in which theJacobian varies as a linear
function of the position in parameter space. This can lead tomore robust and accurate
convergence, particularly when dealing with examples where there is significant texture
variation (such as faces under differing lighting conditions).

The key idea in this paper is to observe that each new evaluation of the residual,r(p),
gives us information which we can use to update our current estimate ofJ.

3 Updating the Jacobian

Suppose we evaluate the residual at two positions,p0 and p1. Let dp = p1− p0 and
dr = r(p1)− r(p0). If the Taylor approximation holds, then theith element of the latter
vector,

dri = jT
i dp = dpT j i (7)

wherejT
i is theith row of J. This defines a single linear constraint on this row ofJ.

Now consider a set ofs+ 1 observations,{p0..ps}. Let dp j = p j −p j−1, anddr j =
r(p j)− r(p j−1). Let X = (dp1|...|dps) andR = (dr1|...|drs). These gives linear con-
straints on each row ofJ,

XT j i = qi (8)

whereqT
i is theith row of R.

If rank(X) < t then this equation is underconstrained. However, with no additional
constraints, we requirej i = j0i , theith row of J0, the Jacobian learnt from the training set.

We can set up a quadratic form which usesj0i as a regulariser,

f (j i) = α|XT j i −qi |2 + |j i − j0i |2 (9)

whereα controls the strength of the regularisation.
Differentiating and equating to zero revealsj i as the solution to the linear equation

(I t +αXXT)j i = αXq i + j i0 (10)

sincej i is a row ofJ, andqi is a row ofR, we have

(I t +αXXT)JT = JT
0 +αXRT (11)

which gives an equation for computing the new estimate ofJ given the initial estimate
from the training set (J0) and the residuals sampled at new positions. Notice that with no
samples this simplifies toJ = J0.
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3.1 A More Efficient Version

Let
A = I t +αXXT

B = J0 +αRXT (12)

ThenA is atxt symmetric matrix, which is positive definite by construction (assuming
α > 0). Thus it can be efficiently and reliably inverted (eg usingCholesky decomposi-
tion).

Thus
JT = A−1BT (13)

.
Suppose our last function evaluation was atp, wherer = r(p). We can estimate the

optimal update,dp, using Eqn 6,

(JTJ)dp = −JT r
(

A−1BTB(A−1)T
)

dp = −A−1BT r
(

BTB(A−1)T
)

dp = −BT r
(14)

Now, lety = (A−1)Tdp be the solution to the linear equation
(

BTB
)

y =−BT r (15)

then the optimal update is given by
dp = Ay (16)

thus we can estimate the optimal update using a few matrix multiplications and the
solution to a single linear equation (15).

However, some of the multiplications areO(nt2), which may be expensive. Fortu-
nately we can construct an incremental algorithm which onlyrequiresO(nt) operations at
each update step.

Suppose thatAs andBs are the versions ofA andB after addings constraints (ieX is
txs, andR is nxs). It is simple to show that ifdps anddrs are the new constraint vectors
to be added, then

As+1 = As+αsdpsdpT
s

Bs+1 = Bs+αsdrsdpT
s

Cs+1 = BT
s+1Bs+1

= Cs+αsBT
s drsdpT

s +αsdpsdrT
s Bs+α2

s |drs|2dpsdpT
s

(17)

each of which can be done inO(nt) or better, if care is taken in the order of matrix
multiplication.

This leads to the following algorithm for AAM search starting fromp0.
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Algorithm
Initialise: Setp0, s= 0, r0 = r(p0)

A0 = I t , B0 = J0, C0 = BT
0 B0

Loop: 1) SolveCsy =−BT
s rs for y O(t3)

2) dps = Asy O(t2)
3) ps+1 = ps+dps

4) rs+1 = r(ps+1)
5) drs = rs+1− rs

6) d = BT
s drs O(nt)

7) As+1 = As+αsdpsdpT
s O(t2)

8) Bs+1 = Bs+αsdrsdpT
s O(nt)

9) Cs+1 = Cs+αsddpT
s +αsdpsdT

+α2
s |drs|2dpsdpT

s O(t2)
10) if |rs+1|2 > |rs|2

thenps+1 = ps, rs+1 = rs

11) s=s+1
Until happy

A natural test for convergence would be of the form|dps|2 < ε for some suitableε,
though a limit on the number of passes through the loop could also be used. Note that no
line search step is required. The update to the matrices means that the algorithm does an
implicit quadratic line search (ie if it does not go to the true minimum along the current
update direction the first time, subsequent iterations willautomatically correct for that).

It will usually be possible to solve the linear equation in step 1 using Cholesky de-
composition, asCs is symmetric and (usually) positive definite.

For larger numbers of parameters,t, it is worth storingCs as its Cholesky decom-
position. The update in step 9 can implemented as combination of rank-1 updates and
downdates to the Cholesky representation. In that case the linear equations can be solved
in O(t2) using a backsubstitution.

In the following we useαs = (δ + |dps|2)−1, whereδ is small, included to avoid
numerical instability after small steps. This gives a weight to the new measurement equal
to the contribution from the training (since

√
αdps would be a unit vector, and the estimate

would be equivalent to numeric differentiation, displacing by±0.5 units along the chosen
direction in parameter space).

4 Results of Experiments

We demonstrate the power of the algorithm by applying it to a variety of different face
databases, and comparing its performance with that of the Basic AAM.

4.1 Static Face Images

4.1.1 People in the Model

We constructed an appearance model from 172 face images (each of a different person
with no facial hair or glasses) from session 1 of the XM2VTS face database [12]. The
model used 50 combined appearance modes. Our test set was 160images of the same
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Search algorithm Mean Boundary Median 90%-ile
Error (pixels) (pixels) (pixels)

Basic 5.17± 0.08 2.98 10.08
Updating 4.23± 0.07 2.67 8.11

Table 1: Boundary errors when searching new images of peopleincluded in the model

Search algorithm Mean Boundary Median 90%-ile
Error (pixels) (pixels) (pixels)

Basic 5.52± 0.07 3.26 13.31
Updating 3.70± 0.04 2.65 6.86

Table 2: Boundary errors when searching images of people notincluded in the model

people from session 2 of the database. For each image we systematically displaced the
(mean) model from the known best position by [-20,-10,0,10,20] pixels inx andy (25
displacements in total) and performed a 3-level multi-resolution AAM search, allowing
at most 10 iterations at each resolution. We then recorded the average point-to-boundary
error (the distance between each model point and the curve passing through the point in
the hand labelled data). Results are shown in Table 1. The updating approach leads to a
considerable improvement in both mean, median and 90%-ile.

4.1.2 People not in the Model

We performed a similar experiment, this time arranging thatthe people in the test set were
not in the training set. We constructed the model from 162 images of 82 people, again
using examples from sessions 1 and 2 of the XM2VTS dataset. Wethen tested on 175
images of different people from the set.

We used the same displacement protocol as before. Results are shown in Table 2, and
show a considerable improvement is obtained by using the updating approach.

To test sensitivity to initial conditions we performed another experiment on the same
data. We initialised the search from a range of displacements in x, and for each we eval-
uated the median boundary error and the proportion of searches converging (defined as
those with a final boundary error less than 5 pixels). Resultsare summarised in Figure 1).
The updating algorithm leads to significantly better convergence rates.
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Figure 1: Plot of convergence and median error vs initial displacement
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Search algorithm Mean Boundary Median 90%-ile
Error (pixels) (pixels) (pixels)

Basic 7.96± 0.09 6.81 14.57
Updating 6.82± 0.09 5.08 10.99

Table 3: Boundary errors when searching images of a new individual under different
conditions to those in the training set

The updating algorithm outperforms the original method considerably.

4.1.3 Fitting a Generic Face Model to an Individual

We trained a model from 480 images of 100 different people, including multiple expres-
sions and head pose variations of each (examples are given inFigure 2). We then repeated
the fitting experiments above on a dataset of 100 images of a new individual taken from
a sequence of that person talking. This sequence was taken under different lighting con-
ditions and with a different camera. Figure 3 shows the results of searching on two of the
frames. In this case the model is unable to accurately followthe shape of the chin (due to
the small training set and the truncation of the modes used).However, the internal facial
features are quite accurately located, and the reconstruction is convincing.

Results of the displacement experiment are summarised in Table 3. and again demon-
strate the superiority of the new algorithm.

Figure 2: Examples of faces with varying viewpoint and expression

Shape Reconstruction Shape Reconstruction

Figure 3: Search results and reconstructions on images of a new individual

4.2 Face Tracking Experiments

The face model described in section 4.1.3 was used to track the face of a new individual
(Fig.3) with different versions of the AAM algorithm. The model was initialised by fitting
it to the (manually annotated) points in the first frame. The search was performed on each
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Search algorithm Mean Boundary Median convergence
Error (pixels) (pixels) failures (%)

Basic 5.81± 0.05 5.42 0.4%
Updating 3.69± 0.01 3.64 0.0%

Table 4: Results of tracking a 1000 frame sequence of a new individual

subsequent frame by initialising at the final result for the previous frame. The boundary
error between the model and the annotated points was recorded. When the error rose
above 10 pixels, the search was assumed to be diverging, and the model was re-initialised
to the labelled points. Table 4 summarises the results for the different methods when
tracking through 1000 frames. Figure 4 shows the boundary error for each frame for the
methods. The updating algorithm gives much more accurate, stable and robust results
than the original algorithm.
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Figure 4: Boundary error against frame number when trackinga face

5 Discussion and Conclusions

We have presented an efficient algorithm for ’tuning’ an AAM to a particular dataset.
Every evaluation of the residual difference between model and image can be used to
update our current estimate of the Jacobian ofr(p), leading to more accurate estimates of
updates in subsequent steps.

The approach described above is closely related to the quasi-Newton methods for solv-
ing least squares problems without derivatives developed by Broyden [2]. He proposed an
algorithm which directly updates the pseudo-inverse of theJacobian. More sophisticated
variants are described by Xu [7]. In future work we will explore using such variants for
the AAM matching problem. The advantage of working with a version of the Jacobian is
that it allows us to incorporate priors in a natural extension of the work described in [6].

With our implementation, the updating algorithm took approximately twice the time
of the basic algorithm, indicating it is dominated by the extra O(nt) operations required
to updateB (step 8). It would be possible to significantly reduce this byupdating only the
columns ofJ associated with the more important modes.

It is possible that repeated stepsdps do not adequately span the full parameter space,
which could result in poorer estimates of the Jacobian in some directions. An interesting
stochastic variant of the algorithm would be to occasionally replace step 1 (estimation
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of dp) with the generation of a small random perturbation. This would ensure that over
time the full parameter space was spanned, and may be particularly useful in tracking
applications.

The algorithm has been described for the basic version of theAAM, but is equally
applicable to a most variants, including [4, 11, 10, 9], though there may be a significant
loss of efficiency in those methods which work by projecting out the texture variation
[4, 11].

Overall, the approach is simple and elegant. It is easy to addto any existing AAM
framework. Our experience suggests that the new algorithm can give more accurate and
stable results than the basic AAM. We encourage anyone currently using AAMs to im-
plement it and explore its performance on their own data.
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