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Abstract

Active Appearance Models [5] are widely used to match dtatismodels of
shape and appearance to new images rapidly. They work bypdmadodel pa-
rameters which minimise the sum of squares of residualréiffees between
model and target image. Their efficiency is achieved by prequting the
Jacobian describing how the residuals are expected to efenthe param-
eters vary. This leads to a method of predicting the positibtihe minima
based on a single measurement of the residuals (thoughdtigarghe algo-
rithm is iterated to refine the estimate).

However, the estimate of the Jacobian from the training debwnly be
an approximation for any given target image, and may be a poerif the
target image is significantly different from the trainingdges.

This paper describes a simple method of updating a repagantof
the Jacobian as the search progresses. This allows us tahieifeAM to
the current example. Though useful for matching to a singiege, it is
particularly powerful when tracking objects through setpes, as it gives a
method of tuning the AAM as the search progresses. We denatmshe
power of the technique on a variety of datasets.

1 Introduction

Active Appearance Models (AAMs) [5] are widely used to mastatistical models of
shape and appearance to new images rapidly. Given a suabbtated set of example
images of a class of objects, we can construct statisticdletsmf their shape and their
patterns of intensity (texture) [5]. Such models can retraos synthetic images using
small numbers of parameters. The AAM algorithm is an efficreethod of estimating
the parameters of the model which synthesize an image asasqsossible to a new target
image - it matches the model to the image.

Fast matching is achieved by assuming that the relatioristipeen the residual dif-
ferences and the parameter displacements is linear, witt@bihn which can be esti-
mated in advance from the training set. A good estimate ob&st dispacement to make
can be computed by a simple matrix multiplication of the entrresidual vector (see
below for details).

However, the assumption that the Jacobian is fixed is onlypgnoaimation, which
can lead to poor convergence for some images, especialbe thignificantly different
from the model mean.
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The key idea in this paper is that each time we re-computeetfiduals during AAM
search we obtain information which can be used to update sitmate of the Jacobian.
This makes subsequent iterations more likely to convergektyuand accurately, as the
Jacobian becomes ‘tuned’ to the current image data. Thétiressearch algorithm turns
out to have an elegant form, requiring only a series of sirtipéar operations. These are
straightforward to add to any existing AAM implementatianth only a modest increase
in computational cost.

The approach is closely related to the quasi-Newton metfuwdelving least squares
problems without derivatives developed by Broyden [2].

The algorithm is also well suited to tracking applicatioas, it can tune an initial
generic AAM to the image sequence as tracking progresses.

In the following we will give an overview of the original AAM@proach and related
literature. We will outline the derivation of the updatinigarithm, and demonstrate how
it can be implemented using fast rank-1 updates. We then sesumts of an extensive
series of experiments on several databases of face imagemndtrating that the new
algorithm is more accurate, robust and stable than thenadigiAM.

2 Active Appearance Models

2.1 Statistical Appearance Models

Statistical appearance models are generated by combinioglal of shape variation with
a model of the texture variation [8, 3].
An appearance model has parametersontrolling the shape, and texture, (in the
model frame) according to
X = X+Qs€
g = g+Qqc @)
wherex is the mean shapeg the mean texture in a mean shaped patch @a@q are
matrices describing the modes of variation derived fromtithi@ing set.

A shape in the image fram&,, can be generated by applying a suitable global trans-
formation (such as a similarity transformation) to the p®im the model frame. The
texture in the image frame is generated by applying a scalnboffset to the intensities
generated in the model frame.

A full reconstruction is given by generating the texture imaan shaped patch, then
warping it so that the model points lie on the image poiXts,

2.2 Interpretation through synthesis

The AAM seeks to minimise a sum-of-squares problem of thefor

F(p)=1Ir(p)?=rTr )

wherep contains theg model parameters (the appearance parameteisgether with
global pose parameters - see [5]), ané: r(p) is a function returning the residual
differences between model and data for parameters



Suppose we evaluate the residuapatvith r = r(p). To a first order approximation
(using a Taylor series), neprwe have

r(p+dp)=r+Jddp 3)

wherelJ is the fixt) Jacobian of (p) (Jj = g—)r(ij).
In this case

F(p+dp) = (Jdp+r)T(Jdp+r) @)
= dp"J"Jdp+2dpTJTr +const

Differentiating w.r.t.p gives gradient

oF 7 T
O.Sa—pf(‘] Jdp+J3'r (5)

and equating the gradient to zero to find the minimum, gives
AT dp = —J"r (6)

Thus by solving Equation 6 we can find the displacemeépt.from the current posi-
tion, p, to take us to the minimum. The key to the efficiency of the AAhie assumption
thatJ is constant and can be estimated from the training ség.ache solution to Eq.6 is
then given by the matrix multiplicatiodp = —Rr whereR is the Pseudo-inverse df,
R = (3§ Jo) 1Jo.

This leads to the basic AAM search algorithm as follows:

Basic AAM Algorithm
Initialise: Setpo, ro=r(po), s=0,k = 0.125
Loop: 1) dps= —Rrg
2) k=10

3) ps+1 = Updatéps, kdps)
4) rsi1=r(Pst1)
5) if [rep1]? > |rgl? andk > k;
thenk = 0.5k, go to step 3
6) s=s+l
Until k < ki 0or s> Smax

The function 'Update’ updates the current estimate of theupaters. Though the
combined parametersare usually updated linearlg,— c+ dc, the global pose should
be updated by composition - see [5]. Matthews and Baker [@ijahstrate that ideally
the shape parameters should also be composed, but thialisaits possible.

In practise the algorithm is run in a multi-resolution framoek. Note that steps 3-5
implement a crude line search, which can be replaced by a somtgisticated approach.
The updating method described below automatically inc@es an efficient line search
mechanism implicitly!

1We have implemented more sophisticated line searches. Thbeglean give modest improvements to the
basic AAM in some cases, results are a little ambiguous, andttiieare outperformed by the new updating
algorithm.



2.3 AAM Variants

The AAMs have been widely adopted, and many applicationsraadifications sug-
gested. Notable amongst these are the Shape-AAMs [4], inhathie algorithm drives
the shape parameters rather than the appearance pararntedrs/erse-Compositional
AAMs [11], in which it is demonstrated that the shape updatautd be implemented as
a composition rather than a simple linear addition, the ds®n-linear texture features
rather than normalised intensities [10], the use of robpist@aches to deal with occlusion
efficiently [9] and various natural extensions to 3D.

Bataur and Hayes [1] have also observed that the assumpéibthe Jacobian is fixed
is unsatisfactory, and proposed Adaptive AAMs, in which Jaeobian varies as a linear
function of the position in parameter space. This can leathdce robust and accurate
convergence, particularly when dealing with examples witkere is significant texture
variation (such as faces under differing lighting condlign

The key idea in this paper is to observe that each new evafuatithe residual; (p),
gives us information which we can use to update our currdithate ofJ.

3 Updating the Jacobian

Suppose we evaluate the residual at two positiggsand p;. Let dp = p1 — po and
dr =r(p1) —r(po). If the Taylor approximation holds, then tit€ element of the latter
vector,
dri =j{ dp = dp'j; )
wherej[ is thei'" row of J. This defines a single linear constraint on this rovd of
Now consider a set a&§+ 1 observations{po..ps}. Letdpj; = p; —pj-1, anddrj =
r(pj) —r(pj-1). LetX = (dps|...|dps) andR = (dry|...|drs). These gives linear con-
straints on each row df,
XTji =qj (8)
whereq; is thei'" row of R.
If rank(X) < t then this equation is underconstrained. However, with rditeaal
constraints, we requitig = j o, theit" row of Jo, the Jacobian learnt from the training set.
We can set up a quadratic form which uggsas a regulariser,

f(3i) = alXTji — gil® + [ji —joi|? ©)

wherea controls the strength of the regularisation.
Differentiating and equating to zero reveplas the solution to the linear equation

(It+aXXT)ji = aXqi+jio (10)
sincej; is a row ofJ, andgq; is a row ofR, we have
(It4+axXXT)I" = 3§ + axRrT (11)

which gives an equation for computing the new estimaté given the initial estimate
from the training setJp) and the residuals sampled at new positions. Notice that mat
samples this simplifies td= Jo.



3.1 A More Efficient Version

Let
A

B

I+ aXXT
Jo+ aRXT

ThenA is atxt symmetric matrix, which is positive definite by construoti@ssuming
a > 0). Thus it can be efficiently and reliably inverted (eg ustigplesky decomposi-
tion).

Thus

(12)

JT=A"1BT (13)

Suppose our last function evaluation wapatwherer =r(p). We can estimate the
optimal updatelp, using Eqn 6,

ATHdp = J'r
(A-BTB(AHT)dp = —A~1BTr (14)
(BTB(A™1)T)dp = -BTr

Now, lety = (A~1)Tdp be the solution to the linear equation
(B"B)y=-B'r (15)

then the optimal update is given by
dp = Ay (16)

thus we can estimate the optimal update using a few matrixiphiohtions and the
solution to a single linear equation (15).

However, some of the multiplications a@nt?), which may be expensive. Fortu-
nately we can construct an incremental algorithm which oetyiresO(nt) operations at
each update step.

Suppose thahs andBs are the versions ok andB after addings constraints (ieX is
txs, andR is nxs). It is simple to show that iflps anddrg are the new constraint vectors
to be added, then

Asi1 = As+ Of:sdp:s(jp%r
BS—‘rl == BS + asdrsdps

17
Csi1 = Bl Bsia (17)

= Cs+ asBIdrdp! + asdpsdr] Bs+ a2|drs|2dpsdp]

each of which can be done i@(nt) or better, if care is taken in the order of matrix
multiplication.
This leads to the following algorithm for AAM search stagifrom po.



Algorithm
Initialise: Setpg, s=0,ro=r(po)
Ao = It, Bo = Jo, Co=B{ By
Loop: 1) SolveCsy = —Blrsfory o(t®)
2) dps=Asy o(t?)
3) Psi1=Ps+dps
4) rsi1=r(pst1)
5) drg=rsp1—Ts
6) d=Bldrs o(nt)
7)  Asi1=As+ asdpsdpl o(t?)
8) Bsi1=Bs+asdredpl O(nt)
9) Cs.1=Cs+asddp! + asdpsd”
+a2|drs]?dpsdpd  O(t?)
10) if |rspa|? > |rgf?
thenps1 =ps, Fsy1="rs
11) s=s+1
Until happy

A natural test for convergence would be of the fojdps|? < & for some suitable,
though a limit on the number of passes through the loop cdslillze used. Note that no
line search step is required. The update to the matricessrthanthe algorithm does an
implicit quadratic line search (ie if it does not go to theetrminimum along the current
update direction the first time, subsequent iterationsautbmatically correct for that).

It will usually be possible to solve the linear equation iapstL using Cholesky de-
composition, a£s is symmetric and (usually) positive definite.

For larger numbers of parametets,it is worth storingCs as its Cholesky decom-
position. The update in step 9 can implemented as combmafisank-1 updates and
downdates to the Cholesky representation. In that casénter lequations can be solved
in O(t?) using a backsubstitution.

In the following we useas = (& + |dps|?) %, whered is small, included to avoid
numerical instability after small steps. This gives a weighthe new measurement equal
to the contribution from the training (sing€adps would be a unit vector, and the estimate
would be equivalent to numeric differentiation, displagby +0.5 units along the chosen
direction in parameter space).

4 Results of Experiments

We demonstrate the power of the algorithm by applying it tadety of different face
databases, and comparing its performance with that of tkeBsAM.

4.1 Static Face Images
4.1.1 People in the Model

We constructed an appearance model from 172 face imagds ¢éacdifferent person
with no facial hair or glasses) from session 1 of the XM2VTE&efalatabase [12]. The
model used 50 combined appearance modes. Our test set wamnd@es of the same



Search algorithm Mean Boundary| Median | 90%-ile
Error (pixels) | (pixels) | (pixels)
Basic 5.17+ 0.08 2.98 10.08
Updating 4.23+0.07 2.67 8.11

Table 1: Boundary errors when searching new images of péogleded in the model

Search algorithm Mean Boundary| Median | 90%-ile
Error (pixels) | (pixels) | (pixels)
Basic 5.52+ 0.07 3.26 13.31
Updating 3.70+£ 0.04 2.65 6.86

Table 2: Boundary errors when searching images of peoplmadoied in the model

people from session 2 of the database. For each image wensgitally displaced the
(mean) model from the known best position by [-20,-10,@@Dpixels inx andy (25
displacements in total) and performed a 3-level multi-hetson AAM search, allowing
at most 10 iterations at each resolution. We then recordedvbrage point-to-boundary
error (the distance between each model point and the cusgathrough the point in
the hand labelled data). Results are shown in Table 1. Thatimgdapproach leads to a
considerable improvement in both mean, median and 90%-ile.

4.1.2 People notin the Model

We performed a similar experiment, this time arranging thafpeople in the test set were
not in the training set. We constructed the model from 162yieseof 82 people, again
using examples from sessions 1 and 2 of the XM2VTS datasetth@fetested on 175
images of different people from the set.

We used the same displacement protocol as before. Resaibaawn in Table 2, and
show a considerable improvement is obtained by using thatingdapproach.

To test sensitivity to initial conditions we performed amat experiment on the same
data. We initialised the search from a range of displacesnent and for each we eval-
uated the median boundary error and the proportion of searchnverging (defined as
those with a final boundary error less than 5 pixels). Resuméisummarised in Figure 1).
The updating algorithm leads to significantly better cogeece rates.
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Figure 1: Plot of convergence and median error vs initigbldisement



Search algorithm Mean Boundary| Median | 90%-ile
Error (pixels) | (pixels) | (pixels)
Basic 7.96+ 0.09 6.81 14.57
Updating 6.82+ 0.09 5.08 10.99

Table 3: Boundary errors when searching images of a newithdiV under different
conditions to those in the training set

The updating algorithm outperforms the original methodsiderably.

4.1.3 Fitting a Generic Face Model to an Individual

We trained a model from 480 images of 100 different peopldutting multiple expres-
sions and head pose variations of each (examples are giégure 2). We then repeated
the fitting experiments above on a dataset of 100 images ofvanuividual taken from
a sequence of that person talking. This sequence was takkem different lighting con-
ditions and with a different camera. Figure 3 shows the teslfilsearching on two of the
frames. In this case the model is unable to accurately fall@shape of the chin (due to
the small training set and the truncation of the modes udéadever, the internal facial
features are quite accurately located, and the reconisinistconvincing.

Results of the displacement experiment are summarisedie Baand again demon-

strate the superiority of the new algorithm.

Shape Reconstruction Shape Reconstruction

Figure 3: Search results and reconstructions on imagesefandividual

4.2 Face Tracking Experiments

The face model described in section 4.1.3 was used to tractatie of a new individual
(Fig.3) with different versions of the AAM algorithm. The el was initialised by fitting
it to the (manually annotated) points in the first frame. Té@rsh was performed on each



Search algorithm Mean Boundary| Median | convergence
Error (pixels) | (pixels) | failures (%)
Basic 5.81+ 0.05 5.42 0.4%
Updating 3.69+ 0.01 3.64 0.0%

Table 4: Results of tracking a 1000 frame sequence of a newiduel

subsequent frame by initialising at the final result for thevipus frame. The boundary
error between the model and the annotated points was retonéhen the error rose
above 10 pixels, the search was assumed to be diverginghamdddel was re-initialised
to the labelled points. Table 4 summarises the results ®rdifierent methods when
tracking through 1000 frames. Figure 4 shows the boundaoy &ar each frame for the
methods. The updating algorithm gives much more accurgdblesand robust results
than the original algorithm.
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Figure 4: Boundary error against frame number when trackifage

5 Discussion and Conclusions

We have presented an efficient algorithm for 'tuning’ an AAMa particular dataset.
Every evaluation of the residual difference between model image can be used to
update our current estimate of the Jacobian(p§, leading to more accurate estimates of
updates in subsequent steps.

The approach described above is closely related to the-§lexgion methods for solv-
ing least squares problems without derivatives develogdstrbyden [2]. He proposed an
algorithm which directly updates the pseudo-inverse ofldbian. More sophisticated
variants are described by Xu [7]. In future work we will exdaising such variants for
the AAM matching problem. The advantage of working with asi@en of the Jacobian is
that it allows us to incorporate priors in a natural extengibthe work described in [6].

With our implementation, the updating algorithm took apqmately twice the time
of the basic algorithm, indicating it is dominated by therax®(nt) operations required
to updateB (step 8). It would be possible to significantly reduce thisipgating only the
columns ofJ associated with the more important modes.

It is possible that repeated stefys; do not adequately span the full parameter space,
which could result in poorer estimates of the Jacobian inesdirections. An interesting
stochastic variant of the algorithm would be to occasignedplace step 1 (estimation
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of dp) with the generation of a small random perturbation. Thisi@nsure that over
time the full parameter space was spanned, and may be pariycuseful in tracking
applications.

The algorithm has been described for the basic version oAtid, but is equally
applicable to a most variants, including [4, 11, 10, 9], thiothere may be a significant
loss of efficiency in those methods which work by projecting the texture variation
[4, 11].

Overall, the approach is simple and elegant. It is easy tot@adehy existing AAM
framework. Our experience suggests that the new algoritmmgé/e more accurate and
stable results than the basic AAM. We encourage anyonerntlyresing AAMs to im-
plement it and explore its performance on their own data.
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