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Abstract

The goal of this paper is to recognize various deformable objects from images. To this
end we extend the class of generative probabilistic models known as pictorial struc-
tures. This class of models is particularly suited to represent articulated structures,
and has previously been used by Felzenszwalb and Huttenlocher for pose estimation
of humans. We extend pictorial structures in three ways: (i) likelihoods are included
for both the boundary and the enclosed texture of the animal; (ii) a complete graph is
modelled (rather than a tree structure); (iii) it is demonstrated that the model can be
fitted in polynomial time using belief propagation.

We show examples for two types of quadrupeds, cows and horses. We achieve
excellent recognition performance for cows with an equal error rate of 3% for 500
positive and 5000 negative images.

1 Introduction
One of the fundamental problems in the field of Computer Vision is object recognition.
Indeed research in this area has seen a mini Renaissance [1, 3, 5, 8, 10, 12, 15], with much
interest focussing on the recognition of object categories rather than individual objects,
e.g. recognizing cows rather than a particular cow (‘Daisy’). In this paper, we present a
method to recognize objects and demonstrate with two types of quadrupeds: horses and
cows. Fig. 1 shows an example of a horse being recognized using our approach.

When attempting to recognize object categories there might be substantial spatial and
colour variation between individual instances of that category, e.g. the variation in the
texture of the cows shown in Fig 8. Furthermore, pose, lighting and occlusion result
in variability in appearance of an object instance. In order to manage this variability
there is a broad agreement that object categories should be represented by a collection of

(a) (b) (c) (d)
Figure 1: Clint Eastwood’s horse is recognized in frames from the movie “The Outlaw Josey Wales”. Figures
(a) and (c) show two frames of a shot. Figures (b) and (d) show the output of our horse category recognition

method on these frames. The green lines show the outline of the parts detected.
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(a) (b)
Figure 2: Example pictorial structure of a cow. (a) Various parts pi of the cow (e.g. head, torso and legs) (b)
The black lines show the location and orientation of the parts and the grey lines show some of the connections
between parts.

spatially related parts each with its own appearance. This sort of approach dates back to
the pictorial structures (PS) model introduced by Fischler and Elschlager three decades
ago [6].

Recent work has shown excellent recognition results using PS for varied object cat-
egories [5]. Furthermore, Felzenszwalb and Huttenlocher [4] have developed computa-
tionally efficient methods for finding the best fit of the PS model in an image. Ramanan
and Forsyth [12] have used PS to represent and detect animals walking or running in
fronto-parallel planes in a video.

We extend the articulated pictorial structure of Felzenszwalb and Huttenlocher [4] in
a number of ways. In particular, both the outline and the enclosed texture of the part
are included in its appearance parameters and all parts are connected to each other to
form a complete graph instead of a tree structure. A properly normalized measure of
the probability of a part being present at a location is modelled using the PDF projection
theorem [2]. Sections 2 and 3 describe the proposed model in detail. Section 4 describes
how the model parameters are learnt and outlines a computationally efficient method for
fitting the model to previously unseen images. Section 5 presents several recognition
results. We summarize in section 6 and suggest some directions for future work.

2 Bayesian pictorial structures
Pictorial structures (PS) are compositions of 2D patterns, termed parts, under a proba-
bilistic model for both the appearance and the spatial layout. A PS can be viewed as a
Markov random field (MRF) with the sites of the MRF corresponding to parts such that the
PS would provide a generative model for the object of interest. By generative we mean
that given an image of an object, we can assign it a likelihood (possibly unnormalized).

Previous works differ in the way they divide the object into parts for the PS represen-
tation. While [12] finds the parts by locating parallel lines across a video, the methods
described in [1, 5, 15] define parts as sub-regions of the object. We observe that for the
connections between parts to truly represent the spatial layout, all points belonging to a
part must always move together rigidly. Thus, we define the parts of a PS as rigidly mov-
ing components of the object. In the case of quadrupeds, this results in 10 parts: head,
torso and 8 half limbs (see Fig. 2).

Each site takes one of nL labels which encode the putative poses of the part. Let
the label at the ith site be li = (xi,yi,θi,σi,ϕi), where (xi,yi) is the location, θi is the
orientation, σi is the scale and ϕi is equal to 0 or 1 depending on whether the part is
occluded or not. For a given label li and data (image) D, the ith part maps to the set of
pixels Di ⊂D. Let nP be the number of parts. Given an image D, the posterior distribution



for the model parameters is given by

Pr(a, l|D) =
Pr(D|a, l)Pr(a)Pr(l)

Pr(D)
. (1)

where a is the appearance parameters and l = {l1, l2, ...lnP}. Let ai be the appearance
parameters for part pi and abg be the appearance parameters for the background. By
assuming that the parts do not overlap, we get

Pr(D|a, l) =
i=nP

∏
i=1

Pr(Di|ai)Pr(D′|abg), (2)

where D′ = D−
⋃

i Di. We can compute the likelihood ratio of the object being present in
the image D to the object being absent as

⇒
Pr(D|a, l)

Pr(D|abg, l)
=

i=nP

∏
i=1

Pr(Di|ai)

Pr(Di|abg)
. (3)

PS are characterized by pairwise only dependencies between the sites. These are mod-
elled as a prior on the labels l:

Pr(l) ∝ exp

(

−
i=nP

∑
i=1

j=nP

∑
j=1

ψ(li, l j)

)

. (4)

Note that we use a completely connected MRF. The benefits of using a complete graph,
instead of a tree structure used in [4], are demonstrated in section 5. In our approach, the
pairwise potentials ψ(li, l j) are given by a Potts model, i.e.

ψ(li, l j) = 0, i f valid con f iguration,

= const, otherwise. (5)

In other words, all valid configurations are considered equally likely and have no cost.
Valid configurations are learnt using training video sequences as described in § 4.1. Given
an image, D, the best fit of the model is found by maximizing

Pr(a, l|D) ∝
i=nP

∏
i=1

Pr(Di|ai)

Pr(Di|abg)
exp

(

−∑
j 6=i

ψ(li, l j)

)

(6)

In our model, appearance parameters a model both the shape and texture of the parts. The
next section describes how we model the likelihood of the parts of the PS.

3 Likelihood of parts
It is not immediately obvious how to estimate the likelihood ratio given in equation (3).
Our approach is to extract a set of sufficient statistics for classification. A statistic zi(Di)
is a function of the image Di and will be denoted simply as zi. If zi is a sufficient statistic
then by the PDF projection theorem [2]

Pr(Di|ai)

Pr(Di|abg)
=

Pr(zi|ai)

Pr(zi|abg)
, (7)



i.e. we hope that the features zi are as good as the original data for detecting the object
(an assumption implicit whenever features, rather than pixels, are used). Although it is
difficult to prove the sufficiency requirement in most cases, near optimal performance can
be obtained even if this requirement is not completely satisfied [14].

For this paper, we select two statistics, noting that others could be used. However, it
will be seen later that these yielded good results. These two statistics zi = (z1(Di),z2(Di))
together model both the shape and appearance of each part pi of the PS. The probability
distributions for Pr(zi|ai) and Pr(zi|abg) are modelled as 2D normal distributions whose
parameters are learnt as described in § 4.1.

Outline (z1(Di)): In order to handle the variability in shape among members of an
object class (e.g. cows), it is necessary to represent the part outline by a set of exemplar
curves (see Fig. 3). Chamfer distances are computed for each exemplar for each pose li.
The first statistic z1(Di) is the minimum of the truncated chamfer distances over all the
exemplars of pi at pose li. Truncated chamfer distance measures the similarity between
two shapes U = (u1,u2, ...un) and V = (v1,v2, ...vm). It is the mean of the distances
between each point ui ∈ U and its closest point in V :

dcham =
1
n ∑

i
min{min

j
||ui − v j||,τ1}, (8)

where τ1 is a threshold for truncation which reduces the effect of outliers and missing
edges.

Figure 3: Examples of exemplars for head, body and legs of a cow extracted from various instances of the

object category.

Texture (z2(Di)): It might be thought that a representative set of textures could be
learnt (similar to the representative set of exemplars for the outline). However, there is
considerable variation in the texture of cows over breeds, e.g. Jersey, Ayrshire, Guernsey,
and this means that at least one example of each breed must be included. Instead we use
a weak model for the texture, and this has proved sufficient to aid in distinguishing fore-
ground from background regions. We model the intensity values of the pixels belonging
to the object as a Gaussian mixture model (GMM) of two Gaussians which captures the
nature of texture for a cow – which is essentially either one or two colours (with image
variation due to lighting, shadows etc.). To capture the intra-class variability in texture,
multiple GMMs are used. In our experiments, we used 20 GMMs. The statistic z2(Di) is
the maximum of the sum of the log of probabilities of the intensities of the pixels within
the region enclosed by pi over all GMMs.

The next section describes how the model parameters are learnt and how the maximum
a posterior (MAP) estimate of the PS is found by maximizing equation (6).



4 Model implementation
The number of labels nL has the potential to be very large. Consider discretization of
(x,y,θ ,σ) into 360×240 for (x,y) with 15 orientations and 7 scales at each location. This
results in 9,072,000 poses which causes some computational difficulty when determining
the MAP estimate of the PS.

Felzenszwalb and Huttenlocher [4] advocate maintaining all labels and suggest an
O(nLnP) algorithm for finding the MAP estimate of the PS by restricting the pairwise
potentials to normal distributions. However, this approach would no longer be computa-
tionally feasible as the number of parameters used to represent a pose li increase (e.g. 6
parameters for affine or 8 parameters for projective). We propose finding the best fit of
the PS for an image D in two stages: (i) part detection, or finding putative positions for
each part along with the corresponding likelihoods, and (ii) MAP estimation of the PS.

During part detection, we consider the same amount of discretization as in [4]. How-
ever, using a strong appearance model along with discriminative features allows us to
consider only a small number of candidate poses, nL, per part by discarding the poses
with low likelihood. We found that using a few hundred poses per part, instead of the
millions of poses used in [4], was sufficient. The MAP estimate of the PS is then found us-
ing an O(n2

LnP) algorithm which does not place any restrictions on the pairwise potentials.
Even though we use a Potts model for pairwise potentials, the extension to any other para-
metric or non-parametric distribution is trivial. The algorithm is computationally feasible
due to the small value of nL. It is worth noting that, unlike our approach, [4] only finds the
MAP estimate of the poses l without considering the appearance parameters a and thus,
does not describe a truly generative model. We now describe how the parameters of the
PS are learnt.

4.1 Learning model parameters
The exemplars for various parts of the PS (as shown in Fig. 3) and other model parameters
are learnt using training video sequences. Rigidly moving parts are identified and valid
configurations are learnt for each video sequence using the method described in [7]. Each
video sequence also provides the intensity values of pixels belonging to the object. These
are then used to learn the parameters of a GMM, which models the texture of the object,
using the EM algorithm. In our experiments, 20 videos of 45 frames each were used.

The parameters of the normal distributions which model Pr(zi|ai) and Pr(zi|abg) are
learnt by computing zi for a number of positive and negative examples of pi. Positive
examples are provided by the training video sequences. We use windows over a few hun-
dred background images obtained from the web as negative examples. We now describe
the two stages of our approach in detail.

4.2 Part detection
The putative poses of the parts are found efficiently using a tree cascade of classifiers.
The cascade efficiently discards poses with low likelihood as pointed out in [13]. When
matching many similar templates to an image, a significant speed-up is achieved by form-
ing a template hierarchy and using a coarse-to-fine search. The idea is to group similar
templates together with an estimate of the variance of the error within the cluster, which
is then used to define a matching threshold. The prototype is first compared to the image;
only if the error is below the threshold are the individual templates within the cluster com-



pared to the image. This clustering is done at various levels, resulting in a hierarchy, with
the templates at the leaf level covering the space of all possible templates (see Fig. 4).

Figure 4: The putative poses of the parts, e.g. the head, are calculated using a cascade of classifiers. A 3-level
tree structure is used to prune away the bad poses by thresholding on the chamfer distance. The statistic z2(Di)

is measured only at the third level of the tree since it is computationally expensive.
In our experiments, we constructed a 3-level tree by clustering the templates using

a cost function based on chamfer distance. We use 20 exemplars per part, with discrete
rotations between −π/4 and π/4 in intervals of 0.1 radians and scales between 0.7 and
1.3 in intervals of 0.1.

The edge image of D is found using edge detection with embedded confidence [9]
(a variation on Canny in which a confidence measure is computed from an ideal edge
template). The statistic z1(Di) (truncated chamfer distance) is computed efficiently by
using a distance transform of the edge image. This transformation assigns to each pixel
in the edge image the minimum of τ1 and the distance to its nearest edge pixel. Truncated
chamfer distance is then calculated efficiently as shown in Fig. 5.

(a) (b) (c)

Figure 5: (a) Original image of a cow in a cluttered scene. (b) Edgemap of the original image. (c) The
distance transform of the edgemap along with an exemplar of the head. Truncated chamfer distance for the

exemplar is calculated as the mean of the distance transform values at the exemplar point coordinates.
The statistic z2(Di) is defined as

z2(Di) = max
k

Pr(Di|GMMk), (9)

where GMMk is the kth GMM representing the texture of the object. To calculate z2(Di),
we use a row sum of the image D. The row sum of the image for GMMk is defined as:

RSk(i, j) = RSk(i, j−1)+ log(Pr(D(i, j)|GMMk). (10)



Fig. 6 shows how the sum of the probabilities of all pixels in one row of Di is found
efficiently. Summing over all rows of Di provides us with a measure of Pr(Di|GMMk).

Figure 6: Row i intersects the region Di defined by an exemplar for the head of the cow at four points A,

B, C and D. The sum of the probabilities of all pixels in row i for the kth GMM is given by RSk(B)−RSk(A)+

RSk(D)−RSk(C).

Despite using row sums, the statistic z2(Di) is computationally more expensive as it
requires calculating Pr(Di|GMMk), for all k. Since truncated chamfer distance (z1(Di)) is
sufficient to reject a large number of bad poses, z2(Di) is calculated only at the third level
of the tree cascade (see Fig. 4).

The putative poses li of parts pi are found by rejecting bad poses by traversing through
the tree structure starting from the root node. The likelihoods Pr(Di|ai) are found using
equation (7). Note that even though the parts do overlap, results indicate that the likeli-
hoods obtained are close to the true likelihoods.

4.3 MAP estimation
A method to compute the MAP estimate of the PS which maximizes equation (6) is re-
quired. We use loopy belief propagation (LBP) to find the posterior probability of a part
pi having label li. LBP is a message passing algorithm proposed by Pearl [11]. It is a
Viterbi-like algorithm for graphical models with loops.

The message that pi sends to its neighbour p j at iteration t is a vector of length nL.
The elements of this vector are given by:

mt
i j(l j) = max

li



V (li, l j)+Bi(li)+ ∑
s∈Ni\p j

mt−1
si (li)



 , (11)

where V (li, l j) = ψ(li, l j) and Bi(li) = log
(

Pr(Di|ai)
Pr(Di|abg)

)

. All messages are initialized to 0,

i.e. m0
i j(l j) = 0, for all i and j and are updated in parallel at each iteration.

The belief of a part pi having label li after T iterations is given by

bi(li) = Bi(li)+ ∑
j∈Ni

mT
ji(li) . (12)

The termination criterion is that the rate of change of all beliefs falls below a certain
threshold. The label l∗i that maximizes bi(li) is selected for each part. Once the MAP
estimate of l is found, it is further refined by searching over a small affine transforma-
tions around l∗i . This allows us to account for slight variations in visual aspects of the
quadruped. The affine transformation which results in the smallest chamfer distance is
obtained by gradient descent. We briefly describe the main steps of our approach below.



Algorithm Recognition of objects from test images.

1. Given an image D, compute the distance transform image.

2. Compute the row sums of the texture match scores.

3. Find the putative positions of parts by the tree cascade of classifiers [13].

4. Consider only those poses li of part pi for which Pr(Di|ai)
Pr(Di|abg)

> τ2 and define
an MRF over the parts as described in § 3.

5. Run LBP on the MRF to obtain the most likely poses l∗i for the PS.

6. Search over affine transformations around l∗i and refine the pose esti-
mates of the part to result in smaller chamfer score.

5 Recognition results
We show recognition results on two types of quadrupeds, cows and horses. For the mo-
ment we restrict this to side views of the animals, which is the current state of the art [3, 8].
The animal is said to be correctly recognized in an image if it is found at the right position
and the total belief of the object at that position is greater than a certain threshold.

Fig. 7 illustrates the advantage of using a complete graph over a tree structure. Ex-
amples of recognition on test images of cows and horses are shown in Fig. 8 and 9. A
number of variations of the algorithm were tested to investigate the contribution of vari-
ous components. These variations were: (i) calculating the likelihoods with and without
using the likelihood ratios in equation (3), (ii) using match scores for shape with and with-
out considering texture, and (iii) using a tree structure with using a complete graph for
connections between the parts. Fig. 10 illustrates these variations on ROC curves obtained
for a total of 500 cow images and 5000 negative examples by varying the threshold on
the total belief of the PS. It is evident from the ROC curves that each component that we
added is beneficial. The recognition performance is excellent e.g. the equal error rate of
the full model is 3%.

6 Summary and Conclusion
We have made a number of extensions to the pictorial structure framework. Methods for
efficiently calculating highly discriminative features which include both shape and texture
information are presented. The connections between parts forms a complete graph and
belief propagation is used for efficient recognition. Results of our method when tested on
many cow and horse images convincingly demonstrate its effectiveness.

The model needs to be extended to handle various visual aspects of a quadruped.
Another extension is to improve the localization of detection by mapping each point in
the exemplar of a part to its nearest edge pixel.
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