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Abstract

This paper compares the use of RANSAC for the determination of epi-
polar geometry for calibrated stereo reconstruction of 3D data with more con-
ventional optimisation schemes. The paper illustrates the poor convergence
efficiency of RANSAC which is explained by a theoretical relationship de-
scribing its dependency upon the number of model parameters. The need for
an a-priori estimate of outlier contamination proportion is also highlighted.
A new algorithm is suggested which attempts to make better use of the solu-
tions found during the RANSAC search while giving a convergence criteria
which is independent of outlier proportion. Although no significant benefit
can be found for the use of RANSAC on the problem of stereo camera cal-
ibration estimation. The new algorithm suggests a simple way of improving
the efficiency of RANSAC searches which we believe would be of value in a
wide range of machine vision problems.

1 Introduction

Many problems in machine vision require the reconciliation of sampled data with a known
model and specifically the parameterisation of this model. Given a multi-variate non-
linear smooth function, denoted byf(x), wherex is the vector ofn unknown variables,
our task is to search then-dimensional space for a location which gives the best statistical
interpretation of the data. This process is often achieved using an optimisation strategy
which attempts to uncover the parameter set which describes the data whilst accounting
for the expected noise in the system.

The final goal of the optimisation is to recover theglobal extremity (minimum or
maximum) of whatever cost function is being employed. The recovery oflocalextremities
is a fundamental issue in optimisation algorithms and usually arises because either the
sampled data is insufficient (unlikely to be the case in most well sampled situations) or
the starting condition of the algorithm prohibits the algorithm from locating the global
extremity. The optimisation process must move from one location to another, on the
surface defined by the cost, towards the minimum. If the starting location for the search
is not on a direct downhill path to the global minimum it will often not be found. The
recovery of optimal solutions is also affected by outlier data which, by definition, cannot
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be accounted for by the model, but also cannot be excluded from the data without extra
knowledge. Unfortunately, the majority of image interpretation tasks involve the analysis
of data which cannot be perfectly segmented prior to interpretation. Thus the majority of
model based scene interpretation algorithms must be able to deal with outliers.

The Random Sample and Consesus (RANSAC) algorithm of Fischler and Bolles [1]
searches for suitable solutions directly using the data, repeatedly constructing solutions
from randomly sampled minimum subsets which are not related to any concept of an
error surface and thus are not restricted to either an assumption of smoothness or the
computational form of the objective function. In contrast to most optimisation algorithms
which attempt to maximise the quantity of data used to identify a solution, RANSAC con-
structs solutions from the minimum subset of data necessary (e.g. two points for a line).
Provided sufficient repetitions are performed RANSAC is expected to identify solutions
computed from outlier free data. To ensure this is the case the objective function used with
RANSAC must be robust to outlier data and so the use of a simple least squares metric
is unsatisfactory. The scope of applicability for the algorithm is great and potentially en-
compasses algorithms based on optimisation with or without the use of local derivatives.
The use of RANSAC as a wrapper around closed form solutions to vision problems gives
potential scope for utility to these otherwise brittle (non-robust) approaches. RANSAC
gives us the opportunity to evaluate any estimate of a set of parameters no matter how ro-
bust or accurate the method that generated this solution might be. The RANSAC method
could thus be considered as an ideal approach to the solution of many machine vision
problems. However, the random nature of the search makes direct use of RANSAC as an
optimisation algorithm inefficient.

2 The Problem of Epi-Polar Estimation

Over recent years several papers have been published which have defined practical solu-
tions for the automatic estimation of the camera motion parameters [4, 3, 12] either for
calibrated stereo or motion estimation. The common goal of these algorithms is to recover
the epi-polar geometry orEssential matrixwhich describes the rotation and translation
of the single moving camera (ego-motion) or between two spatially separated cameras
(stereopsis) from pairings of matched image features. The problem can be expressed as;

X1i = RX2i + T (1)

whereX1i is the 3D position of camera 1,X2i is the 3D position of camera 2 andR
andT are the rotation and translation matrices necessary to move between these two.
The epi-polar geometry is defined by a plane passing through the optical centres of the
two cameras and a point in the world. The constraint can be formulated by manipulating
equation 1 thus;

X1i � (T � RX2i) = 0 (2)

or in terms of image plane co-ordinates;

xT1Ex2 = 0 (3)

whereE is the Essential matrix andx1 andx2 are the vectors of matched feature points
in image plane co-ordinates. This constraint is attributable to Longuet-Higgins [10]. If
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the intrinsic camera parameters are unknown and thusx1 andx2 are only known in pixel
co-ordinates then theFundamental matrixcan be computed where;

F = QT
1
EQ2 (4)

whereQ1 andQ2 are the calibration matrices of the two cameras.
Although many of the published methods for estimatingE orF have practical utility

there has been no systematic study into the comparative performance of these approaches.
We have therefore decided to use this area as a test ground for the comparative evalua-
tion of RANSAC as an approach to the robust identification of global optima in data with
severe outlier contamination. In what follows the optimisation methods described in pre-
vious publications are compared in terms of convergence efficiency and a new method
is introduced which attempts to make better use of the data available to the RANSAC
algorithm.

2.1 Trivedi-Simplex

The Trivedi-Simplex algorithm [5] attempts to recover epi-polar geometry (3 rotation and
3 translation minus one scaling factor) by minimising the epi-polar errors of matched cor-
ners on the image plane. This is achieved by comparing the suggested epi-polar solution
to all known matches using a robust M-Estimator [7] which accounts for the expected
accuracy of the corner features in order to minimise contamination with outlier data, thus;

log(ML) =
X
i

MIN(9:0;
��i�s1i

s1i�sT1i + s2i�sT2i
) (5)

where� is the covariance matrix on the feature locationui, �i = uT
1iFu2i, s1i = uT

1iF

ands2i = Fu2i. Equation 5 defines the objective function and thedownhill simplex
algorithm [9] is employed to recover its minimum.

2.2 RANSAC

RANSAC can be regarded as an optimisation algorithm since, given an objective func-
tion it can determine the parameter set which best positions the model. Provided that the
data and the number of attempts are sufficiently large it is expected that model position
identified by RANSAC is close to the global solution. RANSAC does not use any local
information about the objective function. Instead it samples the objective function at dis-
crete locations by randomly sampling minimum subsets of data and generating candidate
solutions which are then evaluated. Consequently, solutions are not restricted by either the
initialisation of the algorithm (which is random) or the local smoothness of the objective
function (of which RANSAC has no concept).

The RANSAC algorithm used here randomly samples 7 corner matches from the pool
of possible matches. These points are then used to construct a minimum estimate of the
matrixE using the epi-polar constraint of equation 3 (possible because the intrinsic cam-
era parameters are available). From the Essential matrix we are then able to compute
the rotation-translation parameters using the algorithm of Tsai [11] as summarised in ap-
pendix A. This process is only assured to give valid solutions with the minimum number
of points when the condition of theW matrix decomposed fromE fulfills certain condi-
tions [6] which in practice cannot be guaranteed. The obvious solution is to sample more
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data, however equation 10 of appendix B demonstrates them-th power dependency of
the RANSAC algorithm on the number of samplesm. Thus using anything but the min-
imum number of parameters is computationally expensive. Instead we use the minimum
number of points and rely on the RANSAC to disgard the rogue solutions. As before this
epi-polar estimate is then compared to all the remaining corner matches by measuring the
off epi-polar squared error equation 5 (within the accuracy of the corner location). This
error score is used to rank the solution in the RANSAC space.

2.3 RANSAC with fusion

Traditional RANSAC is often used as a means of identifying the inlier datapoints which
are then used in a more conventionally optimisation strategy to find the optimal minima.
This is because RANSAC itself has no mechanism for searching around data-borne solu-
tions.

In the RANSAC with fusion algorithm (RANSAC-f) we maintain an ordered list of
the bestn solutions evaluated by RANSAC. After a number of iterations this list will
be populated with outlier free solutions. However, the longer the list is maintained the
less likely it is that new sampled results will be competitive enough to replace the top
ranked solution; a problem commonly referred to aelitism. Therefore, once this list is
populated with good solutions the algorithm begins combining results in order to generate
improved solutions. When a new solution is ranked high enough to enter the list an
attempt is first made to combine it with solutions already present. Starting with the top of
the list the parameters from both solutions are averaged and a new solution found. This
solution is then evaluated using the same robust, epi-polar error score as used with the
datapoint solutions. If the score for the fused solution is better than both the new and
listed solution then the combined result is placed in a second list and the listed element
removed. Before a solution is entered into this second list an attempt is made to combine
it with any solutions already present. Again if the combined result is better than both the
source data results then this solution is entered into a third list and so on until no further
combination is possible. At any point, if a combination solution is not better than both
source solutions it is simply placed in the current list at its ordered location.

The process of fusion enables solutions not defined directly by sampled data to be ex-
plored, reusing good solutions in an attempt to better the top-ranked result. Combination
of results is appropriate provided that they are of a similar accuracy, i.e. have equivalent
covariances; it is not worthwhile combining accurate measurements with inaccurate mea-
surements. This can be avoided by allowing the list to develop before fusion begins and
constructing the the list from relatively few solutions. The generation of a hierchical list
structure is also necessary if combination is to be performed using source data of equiva-
lent accuracies. Computationally the process of combining results is little different from
sampling the data.

For a particular dataset it is possible to estimate the number of trials required by
RANSAC to arrive at a concensus using the equation below (equation 6 is derived in
appendix B).

n =
log (1� z)

log (1 � (1 � �)m)
(6)

wheren is the number of trials,z is the confidence level,m is the number of points
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selected and� is the outlier proportion. Therefore, it is necessary to know the proportion
of outliers in the dataset which, in most cases, is difficult if not impossible to determine.

In the case of the RANSAC-f algorithm it is believed that a self termination criteria
could be specified using the list update rate. By taking the ratio of the rate of update of
the top list element to the rate of list entries it is possible to define a termination threshold
which is independent of outliers, simply because the probability of an outlier contami-
nated tuple producing a good solution reduces as the search proceeds.

3 Experiments

In the experiments which follow the different algorithms are used to estimate the epi-
polar geometry of 4 pairs of stereo (spatially separated) images. Point correspondences
between the images are established using the corner detection and matching algorithm as
described in [4]. Any remaining outliers (less than 10%) are removed by hand, leaving the
numbers of correct matches as; (a) Head (figure 1) 200, (b) House (figure 2) 63, (c) Saucer
(figure 3) 95, (d) Shaft Assembly (figure 4) 65. The measures which are most appropriate
for evaluating the performance of a stereo camera calibration system are the error on the
verge angle and the epi-polar error. The first determines the accuracy of 3D reconstruc-
tion and the latter determines the accuracy of the epi-polar constraint used during feature
matching [2]. Although we cannot measure the verge error in these experiments, because
we do not have a ‘gold standard’ answer, we can compute the off epi-polar error which is
correlated with verge angle accuracy. The RMS off epi-polar error is plotted against the
number of iterations in the graphs of figures 1 to 4. Although the ranking of solutions by
RANSAC is done using the off epi-polar error compared with all (inlier and outlier) data,
the RMS error plots are computed with inlier data only and thus reflect the deviation away
from the ‘true’ answer.

An iteration was counted for every comparison of an epi-polar solution to the inlier
data. Outlier data was introduced by include mis-match corners at the prescribed percent-
age into the datasets.

The Trivedi-Simplex algorithm requires an initial estimate of the epi-polar geometry,
chosen as parallel in all cases. Also required is a starting scale for the simplex which is
problem dependent and has been selected for each image pair so as to reduce the number
of failures in the outlier free case.

The epi-polar estimation was repeated 30 times and the average RMS error plotted.
The RANSAC-f algorithm was executed with 4 different starting points for the fusion
process, delaying it by 10, 100, 500 and 10 00 iterations.

4 Discussion

The performance of the RANSAC-f algorithm is noticeably improved over the standard
RANSAC approach, often achieving comparable results with a fifth of the computational
cost (iterations). Although the delay in the fusion process has little bearing on the ultimate
RMS residual error, it has significant impact on the rate of decay. Likewise, however,
the same is true of the Trivedi-simplex algorithm when compared to RANSAC-f. The
Trevidi-simplex algorithm out-performs RANSAC-f in all cases, often achieving superior
results in far fewer iterations. This is not suprising, since the Trivedi-simplex algorithm
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Figure 1: Head Image

is using the maximum quantity of data to estimate the solution. However, the Trivedi-
simplex needs to be intialised, prior to execution, with an appropriate simplex scale if
convergence is to be reliably achieved.

5 Conclusions

RANSAC is commonly utilised to identify an outlier free subset of data. This is only
possible if a robust objective function is used and the algorithm is allowed to iterate for
sufficient cycles. The traditional method of determining the termination point requires the
proportion of outliers present in the data, information which is not commonly available.
We have presented a variant on the RANSAC algorithm which maintains ordered lists of
competitive solutions. The lists are used to uncover solutions which are not available to
traditional RANSAC by combining the parameters of previous good solutions. This has
been proved to be an effective technique in order to overcome theO(m) dependency of
traditional RANSAC.

It is also suggested that maintaining such lists could be useful in self termination.
Ultimately however we see that in terms of residual per iterations the conventional tech-
nique remains superior, provided that a suitable start location can be identified. For the
case of stereo camera calibration it is generally quite easy to specify a good starting point.
Therefore the use of RANSAC for this applcation does not appear to be justified. How-
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Figure 2: Brick House

ever, for motion estimation, where the data may also be significantly contaminated with
outliers, this argument may no longer hold. Under these circumstances RANSAC will
typically require typically four times the computatinal resource to attain the same level of
calibration accuracy. Ultimately the strength of the RANSAC approach lies in its ability
to filter outlier data with little in the way of prior information. Thus, a more sophisticated
approach which may be suitable in all circumstances would involve using the results from
RANSAC-f to initialise a simplex search algorithm.

The software (TINA [13]) and data used in this research are available for free down-
load from our website athttp://www.niac.man.ac.uk/Tina .

A Motion Parameter Estimation

Given an Essential matrixE formed under the constraint (see section 2);

xT1Ex2 = 0 (7)

the motion parametersR andT can be estimated by first decomposingE thus;

E = UWVT (8)

and then reconstructing thus;
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Figure 3: Saucer
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2
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e1:e2=e1:e3
1

3
5

(9)
whereR1 andR2 are the camera 1-to-2 and 2-to-1 rotation matrices,t = det(U):det(V),
s is a scale factor andei is thei th row of the Essential matrix.

B Derivation of RANSAC Iteration Length

Given a dataset ofN points of whichg are inliers the probability that a randomly selected
subset ofm points will contain only inliers is;

P (m 2 g) =
gCm
NCm

=
g(g � 1)(g � 2):::(g �m� 1)

N(N � 1)(N � 2):::(N �m� 1)

Wheng is much larger thanm this can be approximated as;

P (m 2 g) �
� g

N

�m
=

�
N � b

N

�m
= (1� �)m (10)
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Figure 4: Shaft Assembly

where� = b=N and is the outlier proportion. The probability of finding an outlier free
subset at thex-th trial is;

P (x) = qx�1p

wherep = P (m 2 g) is the probability of success andq = 1 � p. In n trials the
probability of encountering at least one outlier free subset is;

z = P (1 � x � n) =
nX
x=1

qx�1p =
p(qn � 1)

q � 1
= 1� (1 � p)n (11)

Substitutingp from the relationship in equation 10 and rearrange in terms of the number
of trialsn gives;

n =
log (1� z)

log (1 � (1 � �)m)
(12)
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