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Abstract

This paper deals with monocular video sequences without calibration to re-
cover a maximum of information on displacement and projection parameters.
In this paper, we propose a new way to deal with the huge number of partic-
ular cases of homographic relations and validate this approach with some
experiments showing that if several models are correct, the model with less
parameters gives the best estimation. The experiments presented in this paper
show also that even if the motion is approximate, the method is still robust.

1 Introduction

Let us consider uncalibrated monocular video sequences to recover a maximum of infor-
mation on displacement and projection parameters. This work extends previous studies
[22, 13, 14] on particular displacement cases, scene geometry and camera analysis. It
focuses on the particular forms of fundamental and homographic matrices.

Several authors have already been interested in particular cases of projection [2, 6, 11,
12, 19, 16], or displacement [10, 5, 21, 3, 20]. Some of them consider several specific
cases, compare these different parameterizations, and identify which model corresponds
to the provided input data.

The motivations of such studies are threefold: (i) to eliminate singularities of gen-
eral equations, (ii) to estimate the parameters with more robustness and (iii) to retrieve
parameters that cannot be retrieved in the general case.

It is already known that the huge number of particular cases prevent exhaustive studies
[13]. Some trial have been done based on tree structures but they are still in development
stage. In this paper, we propose a new method to deal with all cases : (i) we use a set
of simple rules in order to eliminate some redundant cases and some physical impossible
cases, (ii) we divide the set of cases into two sets each corresponding to homographic
or fundamental relations and (iii) we divide again the cases into sets corresponding to
particular forms. We will provide details for each of these steps in the sections hereafter.

2 Stereo framework

In this section, we review the equations and the formalism of displacement and projection
which allow to achieve a minimal parameterization of the relations between 2D points in
two frames.
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2.1 Rigid displacements

In this paper, we will consider a rigid or piecewise rigid scene. A 3D-pointM1 =
[X1 Y1 Z1 1]T is moving ontoM2 = [X2 Y2 Z2 1]T by a rotationR and a transla-
tion t = [t0 t1 t2]

T : M2 = RM1 + t. TheR-matrix depends only on three parameters
r = [r0 r1 r2]

T related to the rotation angle� and the rotation axisu by r = 2 tan( �2 )u,
� = 2 arctan(krk=2). The rotation matrixR = er^: = e~r can be developed as a rational
Rodrigues formula [17] :R = I+ [~r+ 1

2
~r2]=[1 + r

T
�r

4 ].

2.2 Camera projection

The most commonly accepted hypothesis states that a 3D-pointM is projected with a
perspective projection onto an image plane on a 2D-pointm = [u v 1]T . Choosing a
reference frame attached to the camera, the projection equation is :

Zm =

0
@�u 
 u0 0

0 �v v0 0
0 0 1 0

1
AM (1)

where�u and�v represent the horizontal and vertical lengths,u0 andv0 correspond to
the image of the optical center and
 is the skew factor.

This model can be refined, by taking optical distortions into account [18, 4, 7]. In this
paper, we will consider that the needed corrections have been done as a preprocessing.
Two approximations have been proposed in the literature :

The para-perspective model : The perspective projection model may be approximated
[2, 15, 12, 13] to its first order with respect to the 3D coordinates. This is equivalent
to approximate the perspective projection in two steps: (i) a projection parallel to the
gaze direction onto an auxiliary planePa which is parallel to the image plane and passes
through the scene centerM0 = [X0 Y0 Z0]

T followed by (ii) a perspective projection
onto the image plane. This so called para-perspective model yields linear equations (2).

m =

0
@�u 
 �u u0

0 �v �v v0
0 0 0 1

1
AM (2)

However, its parameters depend on the gaze direction of the scene (�u and�v are related
to the other intrinsic parameters and to the gaze direction) :

�u = �uX0=Z0 + 
 Y0=Z0

�v = �v Y0=Z0
(3)

Equation 2 corresponds to the most general case of para-perspective projection al-
though more simple expressions have been proposed [16].

The orthographic model : The zero-order development with respect to the 3D depth
consists in a rougher approximation. It is also equivalent to another two steps approxima-
tion: (i) an orthogonal projection onto the auxiliary planePa followed by (ii) a perspective
projection onto the image plane. This approximation, called the orthographic model (4),
is well adapted to foveal attention and is characterized by linear equations without any






new parameter. It is an approximation of the para-perspective model when the observed
objects are in the fovea, i.e. close to the optical axis :

m =

0
@�u 
 0 u0

0 �v 0 v0
0 0 0 1

1
AM (4)

Those three projection models can be integrated in the following expression :

�m =

0
@�u 
 � �u + �u0 (1� �)u0

0 �v ��v + � v0 (1� �) v0
0 0 � (1� �)

1
A

| {z }
A

M (5)

with :

projection case � �

perspective projection 1 1
orthographic projection 0 0
para-perspective projection 1 0

2.3 Relations between two frames

Let I1 andI2 denote two images. In the general case, there exists a fundamental relation
between pointsm2 in I2 and pointsm1 in I1 : m2

T Fm1 = 0 whereF is called the
fundamental matrix [9].

However, this relation is not defined in some singular cases. For example, it is well
known that, in the perspective projection case, if the displacement is a pure rotation or, if
the scene is planar, the relation between points is homographic :m2 = Hm1 whereH
is called the homographic matrix.

2.4 Homographic relation in the para-perspective case

In the para-perspective case, we write the projection and displacement equations by ex-
tracting the third column from matrixA :

m =

0
@�u 
 u0

0 �v v0
0 0 1

1
A

| {z }
(A)

�3

0
@X
Y
1

1
A

| {z }
M

+Z

0
@�u
�v
1

1
A

| {z }
(A)3

= (A)�3M+ Z (A)3

where(A)�3 is an invertible square matrix sincedet((A)�3) = �u �v 6= 0.
Thusm1 = (A1)�3M1

+Z1(A1)3 )M
1
= ((A1)�3)

�1m1�Z1((A1)�3)
�1(A1)3.

Remember thatm2 = A2M2 andM2 = [Rjt]M1

LetK = (A2 [Rjt])3 � (A2 [Rjt])�3 ((A1)�3)
�1 (A1)3

andH1para
= (A2 [Rjt])�3 ((A1)�3)

�1.
Previous equations lead to :m2 =H1para

m1 + Z1K

This relation is homographic if and only ifK = 0 or if there exists a (3�3) matrixHZ

such asZ1K = HZm1. The first condition induces a displacement constraint. It leads






to the simple equationr = �M0 meaning that the rotation axis is parallel to the gaze
direction. The second condition induces a geometric relation on the 3D point :Z1 is an
affine function ofX1 andY1, meaning that the 3D points must belong to a planeP , which
cannot contain the optical axis and the gaze direction (see [13] for a demonstration).

2.5 Homographic relation in the orthographic case

The orthographic case is a particular case of para-perspective projection for which the
gaze direction is the optical axis. Following a demonstration similar to the para-perspective
case, we also obtain two constraints; the displacement constraint states that the rotation
axis must be parallel to the optical axis, and the geometric constraint states that the 3D-
points must belong to the same plane which does not contain the optical axis. All con-
straints on displacement and scene geometry for homographic relations are summarized
in the following table :

projection displacement constraint geometric constraint

perspective t = 0 plane
para-perspective r k CM0 planeZ = f(X; Y )

orthographic r k 0z planeZ = f(X; Y )

3 Deriving all particular cases

Let us now focus on the exhaustive study of particular cases.

3.1 Particular cases of projection

Let p1, p2 andp3 denote the different kinds of projection :

p1 � = 0 and� = 1 orthographic
p2 � = 1 and� = 0 para-perspective projection
p3 � = 1 and� = 1 perspective projection

Authors generally make several hypotheses regarding intrinsic parameters. For ex-
ample, the most general auto-calibration hypothesis states that the intrinsic parameters
are constant. They can be known or unknown. Usually, however, some parameters are
constant while some others are not.

The principal point of coordinates(u0; v0) is not fixed at the image plane in the
general case but can be fixed in some cases and its position can be known (for example,
in the image center). We then change the reference frame, regarding the principal point
position.

The
 parameter is usually assumed to be null or, at least, considered as a constant
value. Furthermore, the numerical precision of the model obtained by this parameter is
not crucial for the para-perspective or the orthographic projection cases.

Considering the�u and�v parameters, Enciso [8] has experimentally proven that,
for a large number of camera, the�u=�v ratio can be considered to be a constant value
even if other intrinsic parameters change. The constancy of this ratio is expressed by the
equalityf = �u = �v (see [13] for the demonstration).






The�u and�v parameters are null except in the para-perspective projection case.
They are related to the other intrinsic parameters by equation 3. Their ratio is :�u=�v =
(�uX0 + 
 Y0)=(�v Y0). Thus, if we neglect
 with respect to�uX0=Y0, we obtain :
�u=�v = �u=�v X0=Y0 which is also a constant ratio, known ifX0=Y0 value is known.

The following table summarizes, for each intrinsic parameter, the particular cases
(constant values are indexed by zero) :

g1 
 = 0 
 constant and null
g2 
 = 
0 
 constant
g3 
 = 
(� ) 
 free
f1 �v = 1 �v constant and known
f2 �v = f0 �v constant
f3 �v = �v(�) �v free
s1 �u = �v(�)

�u
�v

constant and known
s2 �u = �u(�) �u free
b1 �v = 0 �v constant and null
b2 �v = �0 �v constant
b3 �v = �v(� ) �v free
B1 �u = �v(�) �u and�v equal
B2 �u = �v(�)

�u
�v

constant
B3 �u = �u(�)

�u
�v

free
c1 u0 = v0 = 0 u0 andv0 constant and known
c2 u0 = u00 andv0 = v00 u0 andv0 constant
c3 u0 = u0(�) andv0 = v0(�) u0 andv0 free

Table of particular cases of intrinsic parameters for 2 frames

Subsequently, we will refer to each case by the label given in the first column.

3.2 Particular cases of displacement

3.2.1 Discrete motion - continuous motion

In an image sequence, if the displacement between two frames is small, we can approxi-
mate the rotation equation by its first order :R = e~r = I+~r+o(~r), or if the displacement
is larger, we can also consider the second order expansion :R = I+ ~r+ ~r2

2 + o(~r2)

3.2.2 About extrinsic parameters

The rotation parameters are related to the rotation axis and the rotation angle by :r =
2 tan �

2 u whereu is a unitary vector giving the direction of the rotation axis.
Some components ofu can be known or null. Some values of� may yield singulari-

ties; for example� = 0 corresponds to a null rotation;� = �

4 and the rotation axis parallel
to the translation vector for a screw displacement.

Some robotic systems give precise values of robot displacements (angle, axis, trans-
lation); some values may be known, which we indicate with an “_” caracter. Other infor-
mations on parallelism or orthogonality to a known direction may be also available. This
is also the case for the translation vector. Such relations between axis and direction are
considered :






� planar motion:r ? t, r:t = 0
� screw displacement :r k t, 9� = r = �t
� r or t is parallel or orthogonal to a known direction denoted _g.

3.2.3 All constraints on motion

All these constraints, also called atomic cases, have simple expression that can be easily
combined. In this purpose, we use the fact thatu is a unary vector and that, for monocular
systems, the norm of translation cannot be recovered. To parameterize these vectors with
only 2 parameters, we divide each component by a non-zero component. Then, the dot-
product and scalar product induce linear relations. For example, ift2 = 1, t ? r is
equivalent tot0 u0 + t1 u1 + u2 = 0) u2 = �t0 u0 � t1 u1

All cases are collected in the following table :

R1 R = I null rotation W1 r:_r = 0 r ? known axis
R2 R = I+ ~r first order W2 r ^ _r = 0 r k known axis
R3 R = I+ ~r+ 1

2
~r2 second order W3 general case

R4 R = I+
~r+ 1

2
~r
2

1+ r
T

r

4

general case u1 u0 = u2 = 0, u1 = 1 axisk y-axis

r1 r = 2 tan( �
2
) u

kuk
general case u2 u0 = 0, u1 = 1 axis? x-axis

a1 � = �
2

quarter turn u3 u2 = 0, u1 = 1 axis? z-axis
a2 � free angle u4 u1 = 1 general case
T1 t = 0 null translation u5 u0 = u2 = 0, u1 = �1 axisk y-axis
T2 t = [t0 t1 t2]T translation u6 u0 = 0, u1 = �1 axis? x-axis
t1 t1 = t2 = 0, t0 = 1 trans.k x-axis u7 u2 = 0, u1 = �1 axis? z-axis
t2 t1 = 0, t0 = 1 trans.? y-axis u8 u1 = �1 general case
t3 t2 = 0, t0 = 1 trans.? z-axis u9 u0 = u1 = 0, u2 = 1 axisk z-axis
t4 t0 = 1 general trans. u10 u0 = 0, u2 = 1 axis? x-axis
t5 t0 = t2 = 0, t1 = 1 trans.k y-axis u11 u1 = 0, u2 = 1 axis? y-axis
t6 t0 = 0, t1 = 1 trans.? x-axis u12 u2 = 1 general case
t7 t2 = 0, t1 = 1 trans.? z-axis u13 u0 = u1 = 0, u2 = �1 axisk z-axis
t8 t1 = 1 general trans. u14 u0 = 0, u2 = �1 axis? x-axis
t9 t0 = t1 = 0, t2 = 1 trans.k z-axis u15 u1 = 0, u2 = �1 axis? y-axis
t10 t0 = 0, t2 = 1 trans.? x-axis u16 u2 = �1 general case
t11 t1 = 0, t2 = 1 trans.? y-axis u17 u1 = u2 = 0, u0 = 1 axisk x-axis
t12 t2 = 1 general trans. u18 u1 = 0, u0 = 1 axis? y-axis
D1 t:_t = 0 t ? known axis u19 u2 = 0, u0 = 1 axis? z-axis
D2 t ^ _t = 0 t. k known axis u20 u0 = 1 general case
D3 no relation u21 u1 = u2 = 0, u0 = �1 axisk x-axis
Z1 t:u = 0 t ? rotat. axis u22 u1 = 0, u0 = �1 axis? y-axis
Z2 t ^ u = 0 screw displ. u23 u2 = 0, u0 = �1 axis? z-axis
Z3 no relation u24 u0 = �1 general case

Table of particular cases of displacements

3.3 Generating all cases

All particular cases, each called a molecular case, are generated by combining1 the atomic
cases and solving the constraints by substitution with some rules: one projection mode,
one rotation mode. . . This corresponds to choose one case in each family, a family being
named by a letter. Thus, a molecular case is identified by the sequence :

1This work is done using Maple for symbolic computation.






p[1-3]g[1-3]f[1-3]s[1-3]b[1-3]B[1-3]c[1-3]R[1-4]r1a[1-2]u[1-24]W[1-3]T[1-2]
t[1-12]D[1-3]Z[1-3]

How many cases do we have? If we look at the expression of a particular case above-
mentioned, we obtain3:108 particular cases. However, this is not the real number of
particular cases because ofincompability andredundancyof some combinations of con-
straints.

It is easy to eliminate incompatible constraints but it is not possible to deal with re-
dundant constraints because it requires to compare each set of combined constraint with
the others to determine the similarity. The complexity of this process isO(n2).

Although we cannot remove redundant cases, we propose an adapted strategy to deal
with the number of cases. Previous works have tried to build a hierarchy but they en-
counter problems to manage it. The idea of this paper is (i) to eliminate some of the
redundant cases by some considerations on the atomic cases and (ii) to limit the number
of cases by the study of the particular forms of the matrices. For this second step, we
will separate cases into two subgroups: cases inducing homographies and cases inducing
fundamental relations.

3.4 Reducing the number of cases

Some redundancy are obvious :

� in case (R1), one case of axis and angle is condidered,
� in cases (R2) and (R3), we do not consider (a1) when� is equal to�2 ,
� the case (a1) is only considered ifr k t, (Z2),
� in caset = 0, we do not consider any relation of orthogonality or parallelism,
� in cases (p1) and (p3), �u and�v are equal to zero.

We also consider the following experimental simplifications :

� in cases (p1) and (p2), we neglect
 with respect to other approximations,
� we assume that the ratio�u=�v is constant,
� these two previous items imply that�u=�v is also constant.

Then, it remains 2539953 particular cases. This is approximately 100 times less than
previously determined.

3.5 Fundamental and homographic matrices

As previously studied in subsections 2.3, 2.4 and 2.5, the displacements inducing homo-
graphic relations are :

� in the orthographic case (p1) : u k Oz. The relations betweent andr are equiva-
lent to the nullity of some vector components. We will not consider (Z1) and (Z2).
Previous studies on orthographic displacement have shown that the displacement is
retinal (t[1;3;5;7] ).

� in the para-perspective case (p2) : u k [X0 Y0 Z0] (D2). Since the view axis has at
least a component on the optical axis, we set thatu2 = �1. Since the view axis is
not exactly the optical axis, we cannot haveu0 = 0 andu1 = 0.






� in the perspective case (p3) : t = 0. We thus do not consider the parallelism and
orthogonality constraints ont.

We also note that, since we are dealing with only 2 views, relations betweenr or twith
a known vector _g will not simplify the H-matrix form, except in the para-perspective
case, if _g =M0.

For homographic relations, it leads a total of 21330 cases. For fundamental matri-
ces, we will not study para-perspective and orthographic projections since the domain
of validity of such projection approximations is included in conditions of existence of
homographic relation. In the case of perspective projection, we obtain 72252 cases.

4 Forms of homography matrices

We have significantly reduced the number of cases. We split homographic relations in sets
of matrices by forms. We determine a matrix form by a very simple parameterization. We
consider (3�3) matrices having 9 parameters (coefficients). If a coefficient is equal to
zero, then, there is one less parameter. If a coefficient has the same expression or is op-
posite to another, there is one less parameter again. These operations are very simple and
can be rapidly computed on every cases. Obviously, we know that an homographic matrix
is defined up to a scale factor but we will eliminate this parameter at the numerical stage
only. This process reduces the 21330 cases to only 108 subgroups. We have established
a table of reduced forms2 showing the simplified forms obtained and, for each form, all
cases that have generated them.

5 Experiments

We have recorded several video sequences for which the camera displacement induces
an homographic relation between image pointsm1 andm2. From each matrix form
enumerated in table of reduced forms, we have estimated the homography parameters
with the robust least median square method to minimize the distance between a 2D point
m1 and his projected estimationHm2. To deal with cases with different degrees of
freedom, we use an appropriate Akaike criterion [1].

For each video sequence, we have verified that the model with the less residual error
effectively corresponds to the displacement performed by a robotic system. An example
is proposed in figure 1. For each two consecutive images, the case with less residual error
is the case no51 in table of reduced forms that corresponds to the matrix form :

H51 =

0
@ x1 x2 x3
�x2 x1 x6
0 0 x1

1
A

We observe that this case corresponds to a first order rotation (R2). If we consider only
the first and the last frame, the rotation is general (R4).

After that, we performed several experiments without any precise robotic system. A
human took a camera by hand and tried to do several particular displacement. We show in

2http://www.inria-sop.fr/robotvis/personnel/dlingran/bmvc-table.ps.gz






. . .

Figure 1: Frames 1, 2, and 8 of the video sequence. The robotic system performs a
rotation around the optical axis.

Figure 2: Approximate rotation around the optical axis and translation.

figure 2 two frames of a video sequence. The camera performed approximately a rotation
around its optical axis and a translation. As the previous experiment with a robotic system,
for each two consecutive images, the case with less residual error is the case no51 in table
of reduced forms. This result shows the robustness of the analysis of displacement by
particular cases.

6 Conclusion

We have determined the conditions of existence of homographic relations between pro-
jected 2D points for the orthographic, the para-perspective and the perspective projec-
tions. We have used these conditions and other obvious redundancy properties to reduce
the amount of homographic particular cases to study. Thus, we have determined all par-
ticular forms of matrices and we have obtained, for each particular form, the list of cases
that have generated this form. This result is a first fundamental step for further studies.

This study might be completed in two ways : (i) to be able, given a matrix form, to an-
alyze the molecular constraints, to determine which are redundant and which correspond
to the case we are dealing with, and, (ii) to do the same analysis with geometrical property
of the 3D scene, meaning homography induced by planes. The structure of this analysis
is as general as possible in order to extend this work to other kind of cameras.

The applications are twofold: an incremental reconstruction of scene and segmenta-
tion of objects performing different displacements or with different geometric properties
in video sequences.
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