
Zooming while Trackingusing A�ne TransferE Hayman, I D Reid and D W MurrayDepartment of Engineering Science, University of Oxford,Parks Road, Oxford, OX1 3PJ, U.K.Email [ian,dwm]@robots.ox.ac.ukAbstractZoom interacts strongly with both vision and control processes in an active visualsystem, causing problems for many commonly used tracking methods. This paperdemonstrates the use of a�ne transfer to track while zooming, using clusters of cor-ner features. A�ne transfer not only is fundamentally invariant to zoom but alsoprovides a naturalmechanism to allow features to appear and disappearwhile track-ing, events which will occur as detail sharpens and dissolves during zooming. Thepaper demonstrates o�ine 3D a�ne transfer during zoom for objects undergoingsubstantial rotation, and describes real-time experiments using 2D a�ne transferwhile zooming and tracking using an active camera platform.1 IntroductionTwo low-level requirements in visual surveillance are the ability to track and theability to zoom | abilities which win su�cient time and su�cient de�nition forhigher level recognition processes to function. A variety of general image featuressuggest themselves as candidates to be exploited for the tracking and zooming pro-cess, and their associated methods can be grouped into the three broad categoriesof region-, contour- and point-based.For tracking alone, region-based methods, typi�ed by correlation, su�er fromthe problem that they are not view-point invariant, and that they o�er littleimmunity to local occlusions. Contour methods fare considerably better withrespect to view-point invariance and occlusion insensitivity, but at the cost ofincorporating prior templates. The ideal method then would appear to be point-based. An image corner feature is view-point invariant, simple to extract andrequires no prior model. However, as noted in [11, 12], although clusters of cornersexhibit temporal coherence and longevity, individual corners are emphemeral andquite unsuitable for tracking over extended periods.When zoom is introduced, the situation becomes very much more di�cult forall categories of method. Correlation now su�ers particular badly because themethod is fundamentally not invariant to zoom. Contour tracking, where thetemplate is constrained to deform a�nely, is invariant to zoom, but there is thepractical problem of what happens if the single contour falls o� the image whilezooming-in, as would happen to a \whole-person contour" in Figure 1, or becomesvery small while zooming-out, as would happen to a \head contour" taking Figure1 in reverse. Again, a point-based method would seem the ideal. Under active�xation, the single point would be always be near the image centre and hence
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Figure 1: Zooming su�ciently for identi�cation introduces such changes in the imagethat the performance methods of tracking must su�er, especially those based on 2Dmodels.could not fall o� the image. However, the lifespan of the individual point may bereduced by changes in scale. If one turned to naive methods of clustering severalpoints one would su�er the same di�cults as the contour method when corners fallo� or enter the sides of image during zooming in and out, and appear or disappearbecause of scale e�ects.Recent work has demonstrated the active tracking of clusters of corner featuresusing the method of a�ne transfer, both monocularly [11, 12] and stereoscopically[4]. The method �nesses the di�culty caused by the temporal instability of asingle corner by, in the simplest case of 3D transfer, replacing the requirement totrack one corner through all image frames by the less demanding requirement totrack any four points across three successive frames.Because scaling is an a�ne transformation, the method is fundamentally in-variant to zoom. Moreover, because the method allows corners to disappear andappear, and because the gaze point is not tied to a physical feature, it appears tosolve the other problems introduced by zooming.We demonstrate the method with experiments on 3D transfer using code run-ning o�ine on a workstation, and on 2D transfer using real-time code where theresultant tracking position is used to control the gaze direction of an active cameraplatform.Section 2 reviews the theory of a�ne transfer. Sections 3 and 4 describe theimplementations and give results from the o�ine and real-time experiments re-spectively. The results are discussed in Section 5, and conclusions drawn andfuture work remarked on in Section 6.2 TheoryThe a�ne transfer algorithm derived from work [6, 10, 5, 3] which showed thatstructure can be recovered up to a 3D global linear transformation (a�ne or pro-jective). Such recovered structure is su�cient to compute images from arbitrarynovel viewpoints, a process known as transfer.Where scene relief is small in comparison with depth, it is valid to assume ana�ne camera projection x =MX+ t (1)



British Machine Vision Conferencewhere x is a 2� 1 image position vector, M is a 2� 3 matrix, X is a 3� 1 worldposition vector, and t is a 2� 1 translation vector. Consider a set of four points,O;A,B andC, in general position (non-coplanar) on an object (see Figure 2). Thefour points de�ne a basis set fA�O;B�O;C�Og, relative to which coordinatesfor any point on the object (or, for that matter any point in the world), X, maybe uniquely de�ned by three a�ne coordinates, �; �; 
:X = �(A�O) + �(B �O) + 
(C �O) +O (2)These coordinates are invariant to the a�ne projection in the sense that the pro-jected coordinates of the point X are the same linear combination of the projectedbasis vectors: x = �(a� o) + �(b � o) + 
(c � o) + o (3)Given two views of the four basis points (a;b; c;o and a0;b0; c0;o0), we can computethe a�ne coordinates of the �fth point, X in the two views by solving the over-constrained system of linear equations� x� ox0 � o � = � a� o b� o c � oa0 � o0 b0 � o0 c0 � o0 �24 ��
 35 (4)for �; � and 
.Having computed the a�ne coordinates of the pointX, it is trivial to determineits projection in a novel view, given the projected positions of the reference (basis)points in the novel view, asx00 = �(a00 � o00) + �(b00 � o00) + 
(c00 � o00) + o00 (5)Suppose that while tracking an object undergoing a linear transformation (moregeneral than a rigid one), the desired �xation point was g in frame t and g0 inframe t0. We can compute its a�ne coordinates [�g; �g; 
g]> using equation 4above. Then in frame t00, a short time later, the positions of the four basis pointsproject to new positions, a00;b00; c00 and o00, and equation 5 gives a position forthe desired �xation point g00 in the new frame. Note that neither G, nor itsprojections g;g0;g00 need correspond to a physical feature. Thus with any fourcorner correspondences (in general position) in three frames we can reconstructthe position of the desired �xation point given its image coordinates in the �rsttwo frames. The four corners used need not be the same over time: rather, theremust merely be one set of four corner correspondences between each set of threeconsecutive frames, as shown in Figure 2(b).If the no-coplanarity condition is not satis�ed, i.e. the scene is planar, onlythree basis points (O,A,B, say) are required across two views to provide transfer,provided of course, the three points are not collinear.2.1 Using all the featuresTo increase robustness, it has been shown [12] that all points can be used, in an al-gorithm which can be formulated as the factorization method proposed by Tomasi
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432(a) (b)Figure 2: (a) A�ne transfer. (b) The basis set for frames 1,2,3 (the black �lled points)di�ers from that of 2,3,4. Note too that the �xation point + is virtual and can befound even when there is partial occlusion.and Kanade [14], to yield a least-squares estimate for (�; �; 
). (Although in theirwork they were originally concerned with solving the structure-from-motion prob-lem under orthographic projection and for Euclidean structure, the concepts areequally valid for a�ne projection and a�ne structure.) In practice for transfer thefull singular value decomposition used in the factorization need not be computed.The timing then depends on the number of views but not points, giving a constanttime transfer which is of considerable bene�t in the context of real-time tracking.This method is applicable to both 3D and 2D problems, and moreover the singu-lar values indicate if either the 3D or 2D method is approaching their respectivedegenerate con�gurations.More recently, robust methods have been used to eliminate outliers from thetransfer computation [8], but here we use the least squares approach.2.2 Zoom invariance of a�ne transferIt is evident from the above that the computation of the a�ne coordinates doesnot depend on the speci�c M and t. The only requirement is that each imageused is related to the scene by an a�ne transform. Indeed, the scene itself neednot be rigid, but could undergo an a�ne deformation.To a �rst approximation, zooming the lens simply scales the image preservingthe a�ne nature of the transformation. Note that the invariance to zoom impliesthat no knowledge of zoom is required, and so the method is free of calibration.Although a�ne transfer is zoom invariant, other di�culties are introduced foran active system, and these are returned to in the discussion.3 O�ine implementation3.1 MethodFor the o�ine experiments the algorithms for both 2D and 3D transfer usingall points was coded in C on a workstation using the Horatio vision libraries [7].Image corners were detected using the Plessey corner detector, and correspondenceestablished using a simple matcher. The object/background segmentation problem



British Machine Vision Conferencewas eliminated arti�cially by setting a window over the object, and keeping thewindow to a �xed size while zooming in. (This method often has the unfortunateside-e�ect of reducing the amount of data collected.) A 8.5{42.5mm zoom lens asused with a 8:8� 6:6mm format CCD camera, giving angular �elds-of-view from50{10�. The motorized zoom was operated open-loop, whilst viewing a movingobject. We note that for the 3D method to function, su�ciently di�erent viewsmust be obtained so that the structure can be recovered. Whilst this is achievedeasily using stereo [4], using a single �xed camera requires object rotation (orcamera rotation if visually servoing). There is of course no such requirement inthe 2D algorithm used in the real time work.3.2 ResultsWe show results from an experiment where the subject rotates his head while thecamera zooms in. Corner features were detected within the window set initiallyto cover the face. The �xation point is set to the centre of the window in the �rstframe. In subsequent frames the order is reversed: the gaze point is calculatedusing 3D transfer, and the detection window then moved.00 04 0812 16 2024 28 32Figure 3: Tracking o�ine while zooming onto a rotating face. Corner features were de-tected across the face and the �xation point set initially to the middle of the detectionwindow.



British Machine Vision Conference4 Real-time implementation4.1 MethodIn the real-time experiments the zoom lens and camera were mounted on a me-chanical stereo platform using only the elevation axis (up-down) and one vergenceaxis (left-right). The axes, driven by geared DC servo motors are capable of accel-erations of up to 6000�s�2 and minimum/maximum speeds of 0:03=400�s�1. Thecontrol sub-system, running on a single T805 transputer consists of two parts:a low level servo controller, running at 500Hz, receives feedback from the motorshaft encoders and generates appropriate motor torques, and a higher level partwhich operates asynchronously as determined by the visual processing and selectsvisual output to drive gaze constructs such as pursuit (tracking) and saccades,interpolating the visual demands up to a synchronous 500Hz demand for the servocontroller. The visuo control scheme is sketched in Figure 4.Corner detection and tracking were implemented on a group of three trans-puters (two for corner detection, one for matching and tracking), which divide a64� 32 central (or \foveal") window spatially and process at 25Hz with a latencyof less than 70ms. For speed we used the detector of Wang and Brady [15, 1],rather than the Plessey detector used o�ine. Spatio-temporal correspondence ofcorners was achieved using simple variation [12] of the algorithms proposed in[2, 13]. An important feature of the variant is that the image motion of the cor-ners induced by the movement of the camera is calculated for each frame usingodometric information and subtracted from that observed.
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ImagesFigure 4: The visuo-control loop. Encoder data is fedback not only to the servo-controller, but also to the vision module to allow subtraction of induced motion. Thezoom lens is run open loop.4.2 ResultsWe �rst show results from the basic real-time 2D a�ne transfer implementation;that is, without using all points, without zoom, and without controlling the cam-era. It shows more clearly the tracked corners and the changing basis set.Several frames cut from a video taken through the lens of the active camera areshown in Figure 6. The buggy is reversing to the left, and the camera is �xatedon the front mudguard.
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Figure 5: De�ning a gaze direction using 2D a�ne structure: Dotted circles show thepositions of unmatched corners, solid circles show the positions of matched corners,each with a velocity vector, white solid circles indicate the current basis set and across-hair indicates the desired �xation point. (Every fourth frame is shown from a1120ms sequence.)
00 04 0812 16 2024 28 32Figure 6: Real time results captured through the lens of the active camera.



British Machine Vision Conference5 DiscussionAlthough our experiments have demonstrated the feasibility of zooming whiletracking, there are outstanding issues which a�ect the stability of the process.Three such issues arise from the changing relationship between pixel distanceon the image and gaze angle of the camera as the focal length of the lens changes.First, when zooming in upon a target which has constant velocity in the scene,the image velocity increases, a�ecting the performance of the real time cornermatcher. Remedying this would require search parameters that vary using anestimate the focal length. Secondly, as noted in [9], although the focal length ofthe camera is strictly not required to obtain �xation in an active system which usesfeedback, the response of the system does depend on it. Given an error �x on theimage plane, the angular error is �� = tan�1(x=f). Thus if f is overestimated,the angular error is underestimated, and the platform will respond sluggishly andappear overdamped. Conversely if f is underestimated, the system will appearunderdamped. In our work we set the focal length to be that at mid-zoom, andthus the system changes from over- to under-damped as the lens zooms in. Again,a continuous estimate of the focal length is required to correct this. Thirdly, theimage motion induced by rotation of the active camera depends on focal length,and the ability to segment the independently moving foreground from a staticbackground will deteriorate.A further issue which remains unexplored is that of scale-space e�ects duringzooming. This must a�ect the localization of corners, and how new corners appearas the level of details increases. Both of these e�ects in turn are altered by de-focussing which occurs during zooming.The frames shown in Figure 7 are typical of the failure of tracking at full zoom.Figure 7: Tracking fails at high zoom. The most likely cause here is that the imagevelocity has increased to the point where the point matcher fails. However, defocussingand motion blur may also be contributing.6 ConclusionsWe have shown experimentally that the method of a�ne transfer for trackingclusters of features is indeed invariant to zooming of the camera lens. 3D a�netransfer during zoom has been demonstrated o�ine for objects undergoing sub-stantial rotation, and results for a rotating face given here. Real-time experimentshave demonstrated 2D a�ne transfer during zoom, and the tracking error usedto control an active camera platform. Although the method fundamentally needs
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