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ABSTRACT
In this paper, we present a technique for grouping line segments into convex
sets, where the line segments are obtained by linking edges obtained from
the Canny edge detector. The novelty of the approach is twofold: first we
define an efficient approach for testing the global convexity criterion, and
second, we develop an optimal search based on dynamic programming for
grouping the line segments into convex sets. We show results on real images,
and present a specific domain where this type of grouping can be directly
applied.

1 Introduction

Perceptual grouping has been an active area of research in the computer
vision community [1, 2, 5, 9, 4, 11], and some researchers view it as an
integral part of any high level reasoning or object recognition task. A typical
application for grouping is object detection. In general, object detection by
any local process is ambiguous. The ambiguities emanate from noise and
changes in contrast-introduced by the low-light-level imaging- and the lack
of global feedback inherent in the local pixel processing. In addition, most
techniques in low level processing assume a certain model for the underlying
local pixel distribution; it is only an approximation and does not hold at
all times.

This paper deals with a particular type of grouping that involves search-
ing for convex objects [6, 7]. In this context, it is believed that convexity
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is a significant perceptual cue since it remains invariant under perspective
transformation. Furthermore, a number of object recognition systems have
relied on finding convex groups that correspond to sub-parts [2]. However,
we suggest that grouping based on convexity is only one step of the compu-
tational process in mid-level vision, and additional constraints, in the form
of high level filters, such as symmetry, contrast, and color are important
aspects of any interpretation system. Our system extract edges with the
Canny edge detector [3], constructs line segments using iterative line fit-
ting to linked edges, and groups line segments into convex sets. The main
novelty of our system is twofold. First, we define a new notion of global
convexity that is simple to compute, and second, we define a search strategy
that is globally optimum and is based on dynamic programming.

In the next section, we briefly review the past work, and then outline
the details of our technique. Finally, we present the result of the grouping
process, address its limitations, and point out to additional constraints that
are needed per specific domain.

2 Past work

The first work on grouping of isolated line segments into a convex set is
due to Huttenlocher and Wayner [6]. The main novelty of their system is
in the scale space invariant representation of the local neighborhood func-
tion that is based on constrained triangulation. The technique has a time
complexity of O(nlog{n)) that is dominated by the triangulation. The con-
vexity test is local and grouping for line segments is essentially a greedy
based technique. Jacob [7] also developed a technique for grouping sparse
line segments into convex sets, which is based on local convexity test and
back-tracking search strategy. The main difference between our work and
previous research is two fold. First, we propose an efficient global convexity
test, and second, we develop an optimal grouping strategy that is based on
dynamic programming. One immediate result of the global convexity test
is that the spiral effects [6] can be eliminated altogether. Second, global
optimization enhances the noise immunity of the grouping process. Finally,
we also believe that our approach has a simpler underlying structure than
the previous research in this area.

3 Description of method

In this section we summarize different computational steps in the the con-
vexity grouping process. The edge detection is based on Canny's approach
[3], which is inherently a gradient operator. The resulting edges are linked,
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curve segments are extracted, and polygon representations of these curve
segments are obtained. In general, due to noise and variation in contrast,
the edge detection technique produces broken and undesirable curve seg-
ments. The objective is to group these curve segments such that individual
objects can be extracted from background. The local neighborhood is es-
tablished by constructing a list of candidate line segments that lie within a
distance Gthresh from an end point of a line segment. This distance is se-
lected empirically, and it is one of the system's parameters. The candidate
list provides a set of potential hypotheses for grouping line segments into
convex sets.

3.1 Convexity grouping

We envision that each line segment corresponds to a node in a disconnected
attributed graph, and the goal of the grouping is to link the nodes in this
sparse graph in such a way that convex sets are manifested. In this context,
the grouping problem is a function of two entities:

Objects = Group(features, geometric constraints) (1)

In this formulation, features correspond to line segments (nodes) and at-
tributes such as length, position, and direction. And the geometric con-
straints represent the relationship between the nodes of a convex object as
described by line segments. The goal of the convexity grouping is to link
these mid level features, represented as nodes of a disconnected graph, in
such a way that accumulation of these nodes remains consistent with respect
to the geometric constraints.

The geometric constraints are expressed in terms of the relationship
between neighboring line segments. Let S be a convex set that consists
of ordered line segments A\, A2, .., Ak, i.e., A\ and A^ are the first and
last line segments respectively, as shown in figure 1. The convexity test for
adding segment X to S is as follows:

1. let C be the line segment connecting line Ak to A\,

2. let D be the extension of the line Ak,

3. let a be the angle between line segments X and D,

4. let (3 be the angle between line segments X and C,

5. let (f> be the angle formed between line segment D and C,

6. then line segment X can be appended to set S to form a new convex
set if the following two conditions are satisfied:
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(a) a + (3 « 4>, and

(b) segment X does not intersect segment Ax.

The importance of our test is that only the first and last line segments
of a set are necessary and sufficient for convexity verification. As a result,
efficient implementation is feasible.

nt \ V_ \ \ D

(a) (b)

Figure 1: (a) Ax, A2, A3, and X form a convex set; (b) Ax, A2, A3, and X
form a concave set.

The grouping algorithm is initiated by selecting a seed line segment as
the initial hypothesis. In our implementation, the seed segments are ranked
against their length for generating convex objects. Once the seed is selected,
it is used to prune a path for computing a convex set in the direction of
line segments, where the directions of the line segments are dictated by the
Canny edge detector. However, the seed segment might be in the middle of
a convex set. Hence, once the last segment in the convex set is identified, it
is used as a seed segment and a backward search for finding a new convex
set is initiated. It is possible that using this strategy, some of the line
segments that were included in the forward grouping process may not be
included in the reverse direction. Nevertheless, forward and reverse search
are necessary to capture all the line segments that belong to a given set,
and to ensure optimality.

The technique for finding an optimal path for a convex object is based
on dynamic programming [10]. This is achieved by denning a cost function
where desirable properties are directly encoded. Let

1. Li and Li be the length of two adjacent line segments A; and Aj
•31

2. gij be the gap size between line segments A; and Aj, where the gap
size is measured from the proper end points,
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3. ctij be the angle between line segments A{ and Aj,

4. S be the current convex set at iteration i (only the first and last line
segments are needed),

5. T(S, Aj) be a binary constraint of 1 or — oo that tests the convexity
hypothesis of adding segment Aj to S.

We define the local cost function between segments Ai and Aj to be

COSt, =
— oo otherwise

The above cost function favors grouping those line segments that generate
long line segments, with small gaps between them, while maintaining some
degree of collinearity in the group. This cost function is then integrated over
the entire path of a convex set, and the path with maximum cost is then
selected for a given seed segment. In this fashion, the path that satisfies
closure, convexity, and optimality is extracted. The dynamic programming
algorithm is essentially a multi-stage optimization technique where at each
stage, or each iteration, the size of the path is increased by one line segment,
and the cost of that particular path from the initial seed segment to the
last line segment is propagated. This process continues until no more line
segments can be added to the list from a given seed point.

3.2 Optimization

Dynamic programming is a method for solving sequential decision problems
[10]. Let P be a set of states, D be a set of possible decisions, F : PxD t-> T
be a cost function, and tp : P x D ^ P be a function that maps the current
state and a decision into the next state. In a single step, the maximum
possible value starting from state pi is given by:

H1(pi) = max F(pi,d) (3)

By the same token, choosing a decision d that maximizes the value of a
sequence for n states starting from p; is found by:

Hn(Pi) = max[F(Pi,d) + Hn-iMpiid))] (4)
d£D

The above recurrence relation, together with the cost function of equa-
tion (2), specifies an optimum path for the refined contour such that con-
straints are satisfied. In this formulation, the decision d corresponds to any
of the candidate line segments that correspond to Aj in equation (2).
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3.3 Examples and conclusion

In this section, two examples of the convexity grouping are provided. In
these examples, the parameter Gthresh was set to 30 pixels. This algorithm
was initially developed for detection and tracking of precipitates observed
under a transmission electron microscope. It turns out that precipitates
have convex geometrical representation that may satisfy other constraints
such as parallel or circular symmetries as well. These images are generally
noisy, have poor contrast, and depending on the position of the electron
beam and the foil angle, suffer from shading artifacts. An example is shown
in figure 2, where a, b, and c correspond to the original image with Canny
edges overlaid on it, and the result of forward and backward groupings
respectively. Notice that the precipitate contains inner structures that are of
no significance, since we are interested only in global shape features. In parts
b and c, we show the results of forward and backward searches for convexity.
It is quite possible that the search could be initiated from a line segment
that is not at the start of a sequence, and hence, both forward and backward
search is necessary to capture all the line segments that constitute a convex
set. Several convex sets are detected, but, only one of them corresponds
to the real object. In this case, the desired group has higher contrast and
enjoys parallel symmetry. In our system, once an object is extracted, it is
tracked with a variant of the snake model [8] for dynamic shape analysis.
In this context, the initial contour is coarsely localized by the convexity
grouping, and the snake is used for refinement and tracking. The next
example is the result of groupings of line segments that correspond to a
view of a room. In this example, some of the convex shapes are delineated.
And some of the convex sets have no underlying perceptual significance.
The latter is due to the fact that convexity is only one intermediate step in
the mid-level vision and other constraints such is symmetry, contrast, and
color are important cue for any high level interpretation as well.

The optimal convexity grouping algorithm has a time complexity of
0(nm) where n and m correspond to the number of line segments and the
number of line segments in a given neighborhood respectively.

Acknowledgment: The authors thank Dr. Ulrich Dahmen for providing
the data set for this research.
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(a) (b) (c)

Figure 2: Search for convex precipitate: (a) Original edges from Canny edge
detector; (b) Results of forward search for convexity; (c) Results of forward
and backward search for convexity

(a) (b)

Figure 3: Search for convex objects in a room image: (a) Original edges
from Canny edge detector; (b) Results of forward search for convexity; (c)
Results of forward and backward search for convexity
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