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Abstract

There has been a great deal of recent interest in statistical models of 2D land-
mark data for generating compact deformable models of a given object. This
paper extends this work to a class of parametrised shapes where there are no
landmarks available. A rigorous statistical framework for the eigenshape
model is introduced, which is an extension to the conventional Linear Point
Distribution Model.

One of the problems associated with landmark free methods is that a large
degree of variability in any shape descriptor may be due to the choice of para-
metrisation. An automated training method is described which utilises an it-
erative feedback method to overcome this problem. The result is an automat-
ically generated compact linear shape model. The model has been success-
fully applied to a problem of tracking the outline of a walking pedestrian in
real time.

1 Introduction

Statistical Analysis of 2D landmark data has become a well established tool in computer
vision (e.g. morphological methods [1] ). A significant advance in this area is the Point
Distribution Model (PDM) introduced by Cootes et al. ([2, 3,4, 5]). The PDM is a statis-
tical model based on a set of example shapes of a given object. Each shape is described by
a set of landmark points which correspond to particular (often biological) features around
the object. The advantage of this approach is that a whole class of objects or a single de-
forming non-rigid object can be described by a relatively small set of shape parameters.
These models have proven useful in image analysis (e.g. in medical images [4]) and image
sequence analysis (see [6], [7]).

This paper aims to tackle some of the problems associated with extending the land-
mark based PDM to the problem of modeling continuous deformable contours. The aim
is to build a compact, contour model that describes the shapes in a training set. The more
compact the model, the fewer shape parameters are required for accurate representation
which leads to faster and more efficient image search and object tracking procedures. A
more compact model also increases robustness by producing a more restricted solution
space of feasible shapes.

Previous work describes one approach to this problem where the control points of a
cubic B-spline are treated as landmark points (Baumberg and Hogg [8]). This paper ex-
tends this work in two significant ways. Firstly a more rigorous eigenshape model based
on the PDM is derived which takes into account the measurement noise characteristics for



the control points. Secondly, the model is made more compact by eliminating some of the
variability caused by control points shifting along the contour (which cause little change to
the actual observed shape). This work has some similarity to the work of Revow et al. [9]
in that a covariance matrix associated with control point positions is learned from training
data using an iterative learning process.

Hill and Taylor outline an approach to automatically choosing landmark points from
training shapes [10]. This paper describes a simpler alternative approach to automating the
model building process. An advantage of our method is that the complete contour shape
is modeled as opposed to selected points on the boundary. The eigenshape model derived
here retains many of the benefits of the conventional PDM. The model is object-specific
containing a priori knowledge of the expected shape of the class of contours of interest.

2 Background: the PDM

The linear "Point distribution model" of Cootes et al. [2] is a statistical model of a training
set of shapes described by n landmark points. The shapes are aligned to the mean shape,
x, and the differences from the mean are analysed using principal component analysis.
Hence for each aligned shape the vector dx is calculated as follows:

dx — x — x

where each training vector x = (xi, y\,..., xn, yn) describes a set of landmark positions
(xi,yi).

The In x In covariance matrix C — £ (dxdx T ) is then calculated where E{...) is
the expectation or mean value over the training set. The eigenvectors of the covariance
matrix correspond to modes of variation of the training data. Moreover, the eigenvec-
tor corresponding to the largest eigenvalue describes the most significant mode of vari-
ation. The resulting model consists of the mean shape, x, and a subset of t eigenvectors
Pi , P2, • • •, Pt corresponding to the t most significant modes of variation in the training
data.

3 Extending the PDM to parametrised curves

3.1 Theoretical considerations

An implicit assumption of the PDM is that each landmark point position or displacement
is measured independently with 2D isotropic Gaussian noise of fixed variance r (i.e. the
measurement covariance matrix is rl2n)- Point measurements are mapped to the "modes
of variation" shape parameters using:

b = P T ( x - x )

where b is a vector of t shape parameters, x is a 2n vector describing the (2D) point posi-
tions and P is a matrix whose columns are eigenvectors of the covariance matrix. As PT

is an orthonormal transformation, the above assumption leads to the result that the shape
parameters are also measured independently (with a measurement covariance matrix equal
to r / t ) .
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This result coupled with the fact that the modes are a priori derived to be linearly in-
dependent, provides a theoretical basis for treating the shape parameters independently in
the Active Shape Model search mechanism described by Cootes and Taylor ([3]).

Consider a set of parametrised training shapes represented by a set of nodal positions
(e.g. an n control point cubic B-spline). The shapes are continuous closed curves and
the measurement model is assumed Gaussian, isotropic unbiased and homogeneous. Intu-
itively this corresponds to a dense set of point measurements along the continuous curve
at regular parametric intervals. In general any particular point measurement will effect the
position of several nodal positions, (e.g. in the case of a cubic spline each point measure-
ment effects 4 control points) and hence it is incorrect to assume independence of nodal
measurements. In fact Blake et al. show the appropriate measurement covariance matrix
is given by:

R=rn~1

with

Hij = J Hi(u)Hj(u)du

, where Hi is the interpolation function for the i'th nodal parameter (see [11]).

3.2 The linear eigenshape model

Given a known a priori covariance matrix S obtained from a training set the following
eigenproblem can be solved to obtain a set of In eigenshapes

SHe.\ = Aj-ei

Defining the inner product (u, u ) = uT7£u the following results are obtained:

1. The eigenvectors ei are orthogonal with respect to this inner product. By scaling the
vectors appropriately we can enforce orthonormality.

2. Given a new shape vector u = J2i2i A^i + **

= {u- u,

3. Assuming the previous measurement model, the covariance matrix for the coeffi-
cients /i; is given by

Rp = rl

i.e. measurements are independent

4. Over the training set the coefficients //; are linearly independent i.e.

The above properties allow the eigenshape basis to be treated in an analogous way to
the eigenvectors in the standard PDM. Hence the coefficients associated with the eigen-
shape modes of variation are updated independently and a truncated basis of eigenshapes
can be used as in the PDM. This model can be regarded as a Finite Element physical system
with mass matrix % and stiffness matrix S~l.
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4 Generating an initial model from a training set

In order to generate the eigenshapes, a covariance matrix for the training set is required.
Each training shape consists of an arbitrary long set of boundary points. The training infor-
mation is usually the output of some image processing segmentation such as background
subtraction or colour-based segmentation. Alternatively shapes may be hand segmented
using a suitable interactive curve drawing tool.

In order to proceed, each shape is represented by a fixed length shape vector consisting
of nodal parameters that represent an approximation to the curve. The method used is de-
tailed in previous work [8] but a brief summary is given here. Each point on the boundary
is associated with a parameter value. A suitable fixed point is chosen to have parameter
value zero using the principal axis of the boundary set. (The fixed point is chosen to be
the point at which the principal axis crosses the object boundary). The remaining param-
eter values are defined by using the arc-length around the boundary from the fixed point
to each boundary point. The boundary can then be approximated using a cubic B-spline
with a fixed number of control points.

It is important to note the following points:

• As this is only the initial step in an iterative process the exact method of representing
the shapes is not critical. For instance, if the shapes are reasonably well registered
the fixed point may be the upper most boundary point.

• This arc-length parametrisation does not ensure that physically corresponding points
will always have the same parameter values.

• Apparently similar shapes may have quite different nodal representations due to
variation in the placement of control points, (i.e. due to variation in the material
parameter values of corresponding boundary points).

• The resulting eigenshape model may not be as compact as desired due to this addi-
tional variability.

The shapes are aligned in exactly the same manner as in the PDM treating the nodal
control points as landmark points. The covariance matrix for the nodal points, S, is cal-
culated in the usual way. i.e.

5 = £ ( u u T ) - E(u)E(uT)

where u is an aligned shape vector representing the nodal positions of a training shape.

5 Adaptively improving the model

5.1 Active search using the model

We will require a method for fitting the linear shape model to an image containing an ex-
ample of the object. In previous work, we describe a (static) Kalman filter mechanism
for locally optimising the shape parameters of an eigenshape model along with the posi-
tion, scale and orientation parameters [7]. The method is an extension of the Active Shape
Model of Cootes et al. [3] adapted for continuous curve measurements and allows the
shape parameters to vary slowly over time to track a deforming object through an image
sequence. The following points are of interest:
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• For the first frame of the sequence, the estimated variance of each shape parame-
ter is initialised to some multiple of the associated eigenvalue (allowing the more
significant modes to vary more freely). This method allows all the 2n shape param-
eters to be used when necessary. The initial estimate of each shape parameter is set
to zero.

• For subsequent image frames a noise term is added to the estimated variance allow-
ing the shape parameter to vary slowly.

• The Kalman filter mechanism can be regarded as a physical system where there are
internal forces pulling the shape parameters towards the current shape estimate. The
filter is suitable for robust and fast tracking but may lead to compromise solutions
when the internal forces balance the image forces.

• The filter mechanism can be adapted for image search on a single frame by regard-
ing the image frame as an image sequence of N identical images. By tracking over
this new sequence the final contour position can be very accurately recovered (at the
expense of computational speed).

5.2 Improving the model: initial approach

An obvious approach to "bootstraping" the eigenshape model is to utilise the active search
mechanism on training images. The resulting shape parameters, //,-, can be mapped into
corresponding shape vectors and this new training set used to calculate a new mean shape
and covariance matrix.

It is assumed that high quality (possibly pre-segmented) training images are available
in which the approximate location, size and orientation of the object are known. A new set
of training shape vectors can be obtained by running the active search method on these im-
ages. The new training shape vectors are aligned and a new covariance matrix generated.
Note the parametrisation of the shapes is no longer explicitly calculated but implicitly de-
rived from the old eigenshape model. The process may be iterated utilising the previous
model to generate a new set of training shape vectors and a new model.

5.3 Iterative Method

Even if the full set of In eigenmodes are utilised in the active search method, variations
which do not occur within the initial training set will never become apparent in subsequent
models. In recognition of the fact that the initial model is only an estimate of the optimal
model an additional step is taken. The current eigenshape model is perturbed by a simu-
lated noise process. The eigenvalues A, are updated as follows

A/ = A, + a

This is equivalent to adding Gaussian isotropic noise with variance a to the training shapes,
i.e. generating a new covariance matrix S' given by

S' = S + aH~1

This step allows (arbitrary) small perturbations in the nodal positions. This hybrid
model allows fine detail that is not well represented in the original model, to be more ac-
curately recovered. This method is similar to the method employed by Cootes and Taylor
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to combine the PDM with a Finite Element physical model [12]. It is important to note
that all the eigenmodes are used since the noise process ensures that no mode of variation
can be regarded as insignificant. The Kalman filter active search mechanism allows the
more significant modes to vary more easily so that all of the In modes can be employed
without the method becoming unstable.

The parameter a is initially set to around 8 pixels and subsequently decreased gradu-
ally. A diagram illustrating the scheme is shown in fig (1).
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Figure 1: Diagram illustrating the method

6 Results

6.1 Single walk data set

The data set contained 59 shapes (silhouettes) segmented from an image sequence of a
pedestrian walking from left to right across the image. Background subtraction was used
to segment the silhouette of the walker (The method is described in previous work [8]).
Four of these training shapes are show in fig.2. The feedback scheme described above

Figure 2: training shapes

was implemented with and without the additional noise process. Each iterative step gen-
erated a new eigenshape model which was then used for subsequent active image search.
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A "compactness" measure was calculated for each model as follows:

compactness = x 100%

where Ai, A2 are the two largest eigenvalues in the model. The compactness measures
the percentage the principal two "modes of variation" contribute to the total variance. A
large compactness measure indicates that most of the variance is encapsulated by these
two modes. The compactness of each model is shown in fig.4. The graph indicates that in
both cases the compactness increases from under 65% for the initial model to almost 90%
for the final, adapted model. It is apparent that the additive noise process has little effect
on this increase in compactness.

without noise model *
with noise model -<

3 4
no. of iterations

3 4 5
no. of iterations

Figure 3: Average 'fitness' Figure 4: Compactness of models

A "fitness" measure was also calculated at each iteration. This was a crude measure of
how close the final contour lay to the true object shape after each image search. In fact the
average image contrast at sampled points on the contour was used and this "fitness" was
averaged over the training set. A high average fit indicates that most of the contour points
lie close to an edge and hence the segmentation is accurate. The results for both methods
are show in fig.3. The plot shows that without the noise process the benefits of increasing
compactness are offset by the decrease in average fit. However the inclusion of the noise
process generally gives a better fit and the average fit reaches a stable maximum.

Note that these plots show that the iterative process converges quickly (due to the fact
that the initial model is fairly good), with the significant improvements occurring within
the first few iterations.

Figure 5(a) shows a graphical representation of the effect of varying the principal shape
parameter in the initial model. Figure 5(b) shows the principal mode of variation for the
final adapted model. It appears that there is more information encapsulated in the principal
mode of the adapted model.

6.2 Large data set

A second data set was generated containing 462 shapes of the silhouette of a pedestrian
walking in a variety of directions. A sample of the training shapes is show in fig.6. In this
experiment the results of the two methods were very similar. This was probably due to the
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(a) initial model (b) final model

Figure 5: Principal (eigenshape) modes of variation

fact that the initial data set is very large and already quite noisy. Hence there is no need to
add simulated noise. Results are shown for the simpler scheme outlined in sec.5.2.

Figure 6: training shapes from large training set

As before the fitness and compactness measures were calculated. The results are
shown in figs 7, 8. Figure 9 shows the first 10 eigenvalues for each successive model.
The principal variation modes of the initial and adapted eigenshape models are shown in
figs 10(a) and 10(b). This adapted model has been successfully utilised to track a moving
pedestrian in real time with an increase in performance (over the initial model) due to a
smaller number of shape components being required for shape representation.
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initial model -»-
model after 1 iteration -<--•
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Figure 9: Eigenvalues of shape models

(a) initial model (b) adapted model

Figure 10: Principal modes of variation

7 Conclusions
We have described a method for the treatment of closed parametric contours which is re-
lated to the landmark based method of the PDM. One advantage of utilising a spline shape
representation is that object shape is modeled between nodes allowing efficient calculation
of the position and normal to the curve for any parametric value. The spline representation
also allows a more efficient method for calculating a statistical shape model for continuous
curves than using a suitably dense set of sampled boundary points and the resulting shape
model is also more compact in terms of memory requirements.

A simple initial training method is described which can then be adapted using an iter-
ative feedback mechanism. The iterative scheme reduces the variability in the model due
to control points shifting along the contour (causing little change in the observed shape).
There is no loss of accuracy in the adapted model (i.e. the training shapes are well repre-
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sented by the new model). The result is a compact eigenshape model suitable for image
search and object tracking. The method is completely automatic and results have been
shown for several real noisy data sets.
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