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Abstract

Deformable models are a powerful and popular tool for image segmentation,
but in 3D imaging applications the high computational cost of fitting such
models can be a problem. A further drawback is the need to select the ini-
tial size and position of a model in such a way that it is close to the desired
solution. This task may require particular expertise on the part of the operator,
and, furthermore, may be difficult to accomplish in three dimensions without
the use of sophisticated visualisation techniques.

This article describes a 3D deformable model that uses an adaptive mesh
to increase computational efficiency and accuracy. The model employs a dis-
tance transform in order to overcome some of the problems caused by inac-
curate initialisation. The performance of the model is illustrated by its appli-
cation to the task of segmentation of 3D MR images of the human head.

1 Introduction

Real images are often so noisy and complex that one cannot expect local low-level opera-
tions (e.g., edge detection by convolution) to generate good descriptions of object shape.
A higher level approach must be adopted if a smooth, continuous contour or surface is to
be obtained. A considerable body of work now exists describing how this can be achieved
using models of object shape that deform elastically under the influence of image-derived
forces [ 1,2,3,4, for example]. The rrtaterial properties of the model constrain deformation
and provide some measure of immunity to image noise and missing data.

Deformable model fitting can be viewed as a process of energy minimisation. The tra-
ditional, variational approach to the minimisation problem involves finding a solution to
the Euler-Lagrange equations that describe model dynamics. Amini et al. [5] have raised
several issues of concern regarding variational techniques: optimality is not guaranteed be-
cause of the non-convexity of the image-derived external force field; hard constraints can
be properly incorporated only if they are differentiable, which is often not the case; high or-
der derivatives of discrete, noisy data are computed, and the resulting amplification of high
frequency noise increases the chances of numerical instability. Leymarie and Levine [6]
note four other major problems: there is an intrinsic bias toward solutions which reduce
the size of the model; allowing elasticity to be adaptive leads to computational difficulties;
oscillatory or chaotic behaviour is possible if no bounds are placed on the forces that act
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on the model; the steady-state criterion for convergence can actually cause the model to
recede from a valid solution.

Attempts have been made to address these issues within the variational framework [6];
however, other workers have sought alternative computational strategies for energy min-
imisation which do not suffer from the same problems. Amini et al. [5] introduced a dy-
namic programming algorithm for 2D models which takes advantage of the inherently dis-
crete nature of boundary finding in digital images. Their algorithm is numerically stable,
guarantees convergence within a finite number of iterations and allows hard constraints to
be incorporated easily. However, it has storage requirements of 0{nm2) and a computa-
tional complexity of O(nm3), n being the number of model nodes and m the size of the
neighbourhood around each node. It would not be feasible to use this technique for sur-
face fitting in three dimensions. Williams and Shah [7] have developed a simpler, 'greedy'
algorithm for fitting 2D models in which each node seeks to minimise its energy irrespec-
tive of neighbouring nodes. This has a rather more favourable computational complexity
of 0{nm).

A further drawback of many deformable models is the need to initialise the model close
to the desired solution. For many applications, such as the segmentation of medical im-
ages, this requires the intervention of an expert operator. Moreover, with 3D datasets this
interactive approach to initialisation may not be feasible, due to the difficulty of simulta-
neously visualising both model and data in three dimensions.

In this paper, we present an extension into three dimensions of Williams and Shah's
2D active contour model [7]—hereafter referred to as the W-S model. Like the latter, our
model uses simple local computations to determine the deformation that takes place at each
iteration; unlike the W-S model, it can adapt its topology by refining and decimating the
deforming mesh locally, according to the requirements of the data. This technique allows
the overall resolution of the model—and hence the computational cost—to be kept to a
minimum without the loss of important surface detail. It also prevents undue creasing and
stretching of the surface. Delingette [8] employs a similar refinement technique applied
to Simplex Meshes. A second important enhancement is the use of a distance transform.
This removes the need to place the model so close to the desired solution. The distance
transform ensures that model nodes are always under the influence of image forces and
therefore do not remain stationary if too far from the desired edge. A similar technique
has been successfully applied to the related problem of image registration [9].

The following section describes the key features of the model. Sections 3 and 4 present
the methods used to adapt mesh topology. Section 5 presents the results of using the model
to extract surfaces from 3D MR images of the human head. Note that the head is not a chal-
lenging target for segmentation; it can be found with relative ease in MR images, e.g., by
applying the marching cubes algorithm [10] to thresholded voxel data. We use the head
here because it is a familar shape containing both concave and convex regions of vary-
ing complexity, and we are interested in how the model performs in these regions. Our
conclusions appear in section 6.

2 3D Model

Our model extends the 2D W-S model [7] into three dimensions. The W-S model was se-
lected as a basis for the work for reasons of numerical stability; ease of implementation;
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the ease with which hard constraints can be added; and speed (it is much faster than dy-
namic programming methods).

A triangular mesh is employed in the model to represent the model surface. Each node
is surrounded by six neighbours. The initial shape of the mesh is nominally that of a sphere
surrounding the object of interest. During each iteration, a 3D neighbourhood surrounding
each node of the mesh is examined and the energy associated with each position in the
neighbourhood is computed. The node is then moved to the position in the neighbourhood
with the lowest energy. The energy minimised by the algorithm is given by

N

E = J2 (OliEcont + PiEcurv + -nEimg + Eext) , (1)
j = l

where E'cont and i?CUrv are the first and second-order continuity constraints that represent
the internal energy of the model, Eimg is the energy due to external image forces and Eext

is the energy arising from any external constraints applied to the model, such as invalid
positions of a node or a minimum spacing between nodes. The parameters a, /3 and 7
control the relative influence of the internal and external forces experienced by each node
of the model.

The first term, Econt, measures the distance of a node from the centre of gravity of
its neighbours. Since energy is being minimised, this helps ensure that the nodes remain
evenly spaced within their neighbourhood and thereby prevents the bunching of nodes.
This measure also helps to reduce the chance of crossover between nodes in the mesh—
which would result in self-intersection of the surface. We assume

•E'cont = I Pi ~ 11 (2)
n

where P; is the position vector of the current node i and n is the number of neighbours
to that node. The distance measure is normalised using the mean spacing of nodes in the
surrounding neighbourhood in order to allow for regions with a higher density of nodes.

The second term, Ecurv. approximates the curvature of the surface, using the distance
of a node from the average plane of its neighbours (Figure 1). The average plane is con-
structed using the normals, n,, and areas, Ai, of the elements containing the node, and their
centroid, x;:

n E£A-n,- y _ Ee Ai*i n .
n-R' n-T^T' X~T^T' (3)

where £ is the set of all elements containing the node. The distance, d, of the node to the
average plane, p, is then

d=|fi.(p-x)|. (4)
The distance is normalised using the size of the neighbourhood of points used to construct
the plane. This metric is similar to that used in the decimation algorithm developed by
Schroeder et al. [11].

The external constraints (i?ext) are used to prevent the surface moving outside the vol-
ume defined by the image.

Two types of image potential provide the image forces on the model. Initially, the dis-
tance transform of the image [12] is used. This reduces the problems caused by the initial
position of the model being too far away from the desired solution, as every voxel in the im-
age will have a potential associated with it and all neighbouring voxels are unlikely to share
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Plane

Figure 1: Distance to average plane.

the same potential. A node therefore need not remain stationary even if aEcont + fiEcurv

is constant over the search neighbourhood. The distance transform can also be used to
control the rate at which the model deforms. This is achieved by using the image term to
force all nodes to be an equal distance from the surface on each iteration. This approach
prevents some parts of the model reaching the surface much faster than other areas which
can result in creasing of the surface.

When the surface is close to its final solution, the image grey level gradient is used to
provide a driving force. This results in a better fit than that achieved by using the distance
transform alone, as is shown in section 5.2.

The image term, £"jmg> is derived from the image intensity at a node, 7node. This is nor-
malised using the maximum and minimum values of image intensity, 7, within the search
neighbourhood, Af, i.e.,

„ _ I n o d e - m i n ( / , A 0
img max(7, Af) - min(7, Af)

Large fluctuations in the value of £;mg are prevented in regions where the image values
are almost constant by ensuring that max(7, Af) — min(7, Af) > 3.

A further function of the distance transform is to control the values of a and (3 at each
node of the model. A higher value of a prevents the bunching of nodes around strong
edges in the image, but this may also prevent the model from deforming towards features
of interest between such edges. Likewise a high value of/? prevents excessive bending of
the surface but may result in an overly smooth surface. The distance of the node from an
edge is therefore used to relax the constraints on the nodes in the model as it approaches a
solution, thereby allowing the nodes to seek out finer details in the image. For the results
presented in section 5

10r i Eimg > io

3 Mesh Refinement
The computational cost of fitting the model is obviously dependent on the resolution of the
mesh that is used. It is therefore desirable to have the lowest resolution possible, but this,
of course, has to be traded against the need for sufficient detail in the fitted surface. To
overcome this problem, our model is able to refine itself locally by adding extra nodes to
the mesh in areas where they are required. Such areas are regions of more complex shape
or places where the mesh has become 'overstretched', causing a loss of surface detail. In
the human head examples illustrated here, the smoother portions of the surface (e.g., the
top and back of the head) can be modelled adequately with a fairly coarse mesh, but the
ears, eyes, nose and mouth all require more detail if they are to be represented accurately.
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The criteria used to select elements for refinement are based on three metrics. The first
of these uses the local curvature of the surface at a node. If the curvature or the change of
curvature at that node is above a threshold value, then the elements containing the node
are refined.

The second metric uses the distance of the model surface surrounding a node from
the surface in the image when the model is close to its final state. The metric measures
the distance transform of the image at the position of the node and also at points between
neighbouring nodes along the edges of the mesh. This additional information is used to en-
sure that despite neighbouring nodes lying close to the image surface, the element between
them does not smooth over important image information. If any of the points are found to
be above a threshold distance from the image surface, this suggests that this region of the
mesh may not have reached its best solution and the node's elements are refined as before.

The final metric measures the area of the elements in the mesh and refines elements
which are large relative to neighbouring elements in the mesh. This allows elements that
have become stretched and may therefore not fit the underlying surface accurately to be
refined.

The mesh refinement technique used here is based on Rivara's local refinement algo-
rithm [13]. A similar approach is adopted in [14]. The process consists of two steps; the
bisection of an element, and a conforming operation which ensures that the properties of
conformity, non-degeneracy and smoothness are maintained.

The bisecting operation bisects an element by its longest edge. This method of bisec-
tion has been shown to prevent the interior angles of an element from becoming acute [15].
It also improves the shape regularity of the elements.

The conforming operation is then used to ensure that the mesh possesses the proper-
ties required by the finite element method—where two adjacent elements must only share
either a node or an edge [16].

4 Mesh decimation

During the deformation process many of the nodes of the mesh may become redundant,
i.e., they are no longer required to produce an adequate description of the surface. Nodes
may also bunch together, thereby inhibiting further deformation locally. The removal of
such nodes is desirable, to improve both the efficiency of model fitting and also the quality
of the resulting surface.

The decimation procedure used here is based on that of Schroeder etal. [11]. Two cri-
teria are used to decide if a node should be removed from the mesh. The first is curvature-
based, similar to that described for mesh refinement in section 3. In this case, the curvature
(equation 4) must be less than a predetermined value for a node to be removed, indicating
that the surface is very smooth and the removal of a node will therefore not signiifcantly
alter the shape of the surface. The second criterion for decimation is when the average
distance between a node and its neighbours falls below a predetermined value, indicating
that the nodes are bunching together.

If a node is removed, the region surrounding that node must then be retriangulated in
order to maintain a conforming mesh. The triangulation procedure adopted here is that
described by Schroeder et al..
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5 MR Image Segmentation

We use the model here to extract the outer skin surface in 3D magnetic resonance images
of the human head. This is a somewhat contrived example which serves as a means of
evaluating model performance on shapes of moderate complexity.

5.1 Distance Transform Calculation

Calculation of the distance transform requires knowledge of the approximate position of
object boundaries in the image. We acquire this by first smoothing the image using a me-
dian filter, in order to remove unwanted speckle noise. The filtered image is then thresh-
olded and a simple 3D edge operator [17] is applied to identify voxels in the vicinity of
the skin surface. This procedure works because, in our MR data, the contrast between the
skin surface and the background is high. Finally, a distance transform is produced by con-
volving the edge image with the following 3D chamfer kernel [12]:
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For Euclidean distances, A, B and C should be in the ratio 1 : y/2 : y/Z. Integers with
approximately this ratio are used in this case.

5.2 Results

We present results here for a 128 x 128 x 128 MR image of the human head. The inital mesh
is a sphere of radius 60 voxels containing 4098 nodes, placed at the centre of the image.
The initial values of the mesh parameters are a = 1.0, /?= 1.0 and y = 1.4. The model
is allowed to deform until the number of nodes moving at each iteration remains almost
constant. For these data, 50 iterations are typically required, consuming approximately
200 seconds of CPU time on a Silicon Graphics workstation (100 MHz R4000 processor,
64 Mb main memory).

Figure 2 is a series of snapshots of the model evolving towards a solution. In a -e ,
deformation was driven by the distance transform alone. In f, the grey level gradient sup-
plied the external forces—and, as a result, the level of detail around the mouth and ears
has improved.

Figure 3 shows a comparison of surfaces produced with (a) and without (b) any re-
finement of the mesh. Clearly, more detail is obtained around the ears and mouth by using
the refinement process.

Figure 4 illustrates the mesh refinement/decimation procedure. One can see that the
model has a higher resolution in the most complex areas of the surface (the eyes, ears and
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Iteration 30
(d)
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Iteration 10
(b)

Iteration 40
(e)

Iteration 20
(o)

Iteration 50
(f)

Figure 2: Surfaces produced during deformation.

(a) (b)
Figure 3: Comparison of surfaces produced with and without refinement or decimation.
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nose) and a lower resolution in smoother regions (the top and back of the head). The final
mesh employs 6684 nodes. By comparison, a contour stitching algorithm [18] will gener-
ate over 10,000 nodes for the same dataset.

Iteration 5
(a)

Iteration 30 Iteration 50
(b) (c)

Figure 4: Refined mesh produced by the adaptive model.

Figure 5 compares surfaces produced with and without the adaptation of parameter a
in equation 1. In a, nodes bunch around the edges of the eyes because a is too low. This
produces large mesh elements stretched across the eyes, and hence a loss of detail. In c,
too high a value of a leads to a smoother surface with the loss of some fine detail.
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a = 0.5 a = auto a =1.0
(a) (b) (c)

Figure 5: Effect of parameter a on model fitting.

6 Conclusions

The results presented here show how improvements to the performance and accuracy of a
3D deformable model are possible through

• use of a fast algorithm to compute deformation

• use of a distance transform to drive initial deformation

• automatic refinement of the mesh in areas of high detail

• automatic decimation of the mesh in smooth areas, where detail is low

The local adaptation of the parameters of the model can also be used to improve the sur-
faces produced; local adaptation of parameters prevents the bunching of nodes and also
the stretching of elements which may result in the loss of important information.

The rules which govern mesh refinement, mesh decimation and parameter adaptation
are clearly a very important factor in the successful application of the model and are hence
the subject of current investigation.
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