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Abstract
This paper presents an approach to motion understanding, through identification of physical pa-
rameters from image sequences. It is based on a family of particle-based physical models where
deformable objects are represented as sets of weighted particles and their interactions. The inter-
action model presented derives from an energy potential, using dual bonds (extension springs) and
ternary bonds (torsional springs).

An original dynamical motion analysis algorithm is described, which extracts physical animation
parameters (springs lengths, angles, stiffness...) through the processing of an image sequence. Ge-
netic techniques are employed to perform the fitting of parameters in an analysis-by-synthesis
scheme. Experimental test results on synthetic sequences are reported.
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1- INTRODUCTION

This work is a first step towards
automatic interpretation of motion
from image sequences, in terms of
mechanical properties of the objects
involved. Elastic, deformable objects
are modelled using structures of parti-
cles connected by elastic bonds. A
self-consistent analysis-by-synthesis
method interprets the space-time be-
haviour of the object by fitting pa-
rameters of the model.
Many approaches to motion inter-
pretation are restricted to a 2D or 3D
geometric or kinematic view (optical
flow,...) and often fail to consider
whether or not motion is actually con-

sistent or physically possible. Human
skills in motion visual interpretation
in kinesthesic terms (e.g. in sports
training, where state-of-the-art com-
puter vision lags far behind human
ability) suggests the introduction of a
general physical and empirical
knowledge of the processes involved,
into automatic interpretation and pre-
diction of images.
Concerning physical motion model-
ling, we consider the approach of the
LIFIA/ACROE team in the University
of Grenoble [.LJFCR91, C90] as our
main reference. It aims at modelling
particle-based physical processes in
real time, using gesture-feedback
transducers to produce synthetic im-
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ages or sounds in a Virtual Reality
environment. ACROE have con-
firmed the interest of the particle-
based approach in image synthesis but
have not solved satisfactorily the
problem of automatic model identifi-
cation as yet [SC93]. Their model is
constrained by specific user interface
requirements.
Our physical model uses a greater va-
riety of primitives and an energy-
based model to enable a simpler ob-
ject representation, making it more
suitable for automatic parameter iden-
tification. The aim of this work is to
find algorithms that can perform this
task on particle-based animation
models.
This research may have applications
in domains like physical motion
understanding, motion prediction,
synthetic TV, animated image syn-
thesis.
The first part of this paper describes
the animation model used, based on
particles and energy-derived inter-
action forces. The second part deals
with the identification methods we
have developed to get the dynamic
parameters. Some experimental test
results are given in appendix.

2- PARTICLE-BASED
PHYSICAL MODELLING

2-1 Physical modelling

The first objective is to introduce a
dynamical animation model for use as
the basis of an image sequence analy-
sis scheme. The original meaning of
"dynamics" refers to forces and force-
based models, rather than to a merely
kinematic approach.
One of the difficulties of this ap-
proach comes from the fact that most
Computer Vision research starts from
a given application to be solved, and
then develops ad-hoc modelling

methods as required. In contrast the
approach adopted here takes motion
modelling to be a fundamental task in
itself, independent of any particular
application.
Computer vision has a central interest
in deriving physical properties of ob-
jects in the scene from their images,
contributing to a more complete and
accurate image interpretation. These
physical properties are the input pa-
rameters of physical models used in
the image synthesis process:

physical motion synthesis imiifie synthesis (rendering)

• >

physical model positions versus lime images

I'hysnul motion interprt'tntwn detection (low-level vision)

In the analysis-by-synthesis technique
used here, a physical model of motion
is first introduced and implemented in
the form of a motion synthesis algo-
rithm. Then the motion interpretation
algorithm utilizes the synthesis algo-
rithm as a component of an optimiza-
tion process. Physical modelling thus
forms the central tool in the analysis-
by-synthesis process.
For the purposes of what follows, the
low-level vision part of the above di-
agram need not be considered in de-
tail as its specification will be dictated
by higher level requirements. Similar-
ly, image synthesis is only secondary
to the main task of physical motion
interpretation. It is only needed to
provide the test sequences for direct
input to the motion interpretation al-
gorithm (bottom left arrow).
The first task is to choose a model
containing the physics controlling the
system's behaviour. Different points
of view in image animation (e.g. the
realism of articulations, shocks pro-
cessing, interfacing gestural control...)
have led the image synthesis commu-
nity to a variety of choices for primi-
tives and physical representations of
behaviour and interaction [AG85,
DZ93, GV89, GVP91, MZ90,
TPBF87].
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To this end we devised a structure de-
scription language based on point
masses and their interactions. It in-
cludes both binary (pairwise) and ter-
nary (torsional springs) interactions,
to allow thin objects to be represented
by simple structures, only containing
physically meaningful particles, pref-
erably located inside the objects.
The physical consistency of the
system is ensured by the use of global
energy potentials in this particle-
based model. The total energy of the
system is expressed as a sum (over all
particles) of local potential energy
terms associated with each particle,
but retains the possibility of refine-
ments by adding e.g. some global en-
vironmental corrective terms. The in-
put variables are distances and angles
between particles.

A mechanical structure.

Using binary bonds only, would gen-
erate two problems, both linked to the
fact that modelling a given object
without ternary bonds may imply the
addition of extra particles into the ob-
ject model, in order to mimic the ter-
nary bonds' torsional effects.
The first is that the process of auto-
matically extracting the positions of
these extra particles from real images
seems to be out of the reach of a low-
level image processing algorithm. The
second difficulty arises from the fact
that the extra particles introduced ir.ay

have low masses and generate motion
aliasing effects (due to excessive
force/mass ratios) which could only
be solved by an increase in the sam-
pling frequency and precision of
number representation. This would
cancel out any benefits derived from
the simplicity of using binary inter-
actions.
In the present phase of the project,
which aims only at solving the iden-
tification problem, no dissipative en-
ergy terms have been included.

2-2 Implementing an energy-based
model

As already mentioned, the total ener-
gy of the system is given by sum of
local energy terms:

F- — 2-1 (Fliinaiy + Eirnwry)

where:

Ein,ry{particle l) =
j

and:

So(tlist (i,j) - Ly

u (i,j) and u (i,k) are the unit vectors
of the i-j (resp. i-k) directions, "•" is
the scalar product, Lu and M;,t are the
i-j link length and the j-i-k angle co-
sine at rest, S(/ and T/Vi are the radial
and angular stiffness coefficients.
With the preceding conventions, the
force model may be derived from the
gradient of the bond energy E. Its x
coordinate may be written as:

fx = fix + fix + fix

where:

fu = - X v
uij
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h<=
j neigh, i

k neigh, i

Tin
j neigh, i

k neigh.j

dij = \fxJTyJTz7j

The term flx corresponds to forces
generated by binary bonds.
The terms /2 v and flK correspond to
forces generated by ternary bonds: fzK

is the force component resulting from
particle / being the central element of
a ternary bond (j,i,k), whereas/3v re-
sults from i being an extremity of a
ternary bond (i,j,k).
Animation may then be obtained
through discrete integration, using po-
sition and speed values at the pre-
ceding time step to determine inter-
action forces and the current position:

This formula models continuous
interactions between the particles of
the objects. Real shocks between ob-
jects may be introduced as ideal
shocks involving infinite accelera-
tions. Therefore, as singularities in the
acceleration domain, they require
handling at a different level in the mo-
tion integration process.

3- LEARNING THE MODEL

3-1 Cost functions

Two physical parameter identification
methods using the above basis are
now considered as follows.
The basic idea is to launch the anima-
tion program, using an arbitrary ob-
ject structure and parameter set, and
to record the objects' coordinates from
the resulting animation sequence. The
learning task consists then in solving
the inverse problem: assume an un-
known parameter set, and reconstruct
the object's mechanical parameters us-
ing the recorded animation only (i.e.
the coordinates of the particles versus
time).
In other terms, our problem is to find
out a near-optimal mechanical repre-
sentation of the system, consisting of
a set of parameters (particles masses,
linear bonds between particles with
attributes of stiffness and length at
rest, angular bonds with attributes of
angular stiffness and angle at rest)
which, if put back into the animation
model, would give an object with a
behaviour as similar as possible to the
original's.
The identification problem may be
represented as the optimisation of a
cost function:

Cost (model) = X £ (dpred,^ - dreal,tiJf
lime jxtriiclcs

where

ijj is the actual (ob-
served) distance between
particles / and j at time
step f;
dpreduj is the distance
between the same particles
at time step t, as predicted
by application of the phys-
ical model to actual co-
ordinates and speeds of all



705

the particles at the
ceding time step

the pre-

t - 1).
The physical model we use in the
learning phase (motion analysis) is
identical to the model used in the
animation (motion synthesis).
The identification algorithms have
been developed using the cost func-
tion above, to reconstruct the values
of springs and torsional springs char-
acteristics. In order to simplify the
problem, the structure and masses
values are assumed to be already
known.

3-2 Simulated annealing

The first algorithm is based on the
principle of simulated annealing. The
philosophy of the algorithm is to ran-
domly modify all the numerical val-
ues of the model at each identification
step. It uses a Gaussian noise the
standard deviation of which depends
on a parameter called temperature.
The cost function is then evaluated on
the new set of parameters and com-
pared to the preceding cost value. If
the cost of the new set of values is
lower, the new set will replace the old
one; if not, a second random choice
will be made to decide whicli set
should be retained. The latter choice
depends on the difference of costs of
the old and new sets: the probability
of retaining the new set rapidly de-
creases with the cost difference. The
temperature falls exponentially at
each step. The lengths of binary
bonds are initialised as the average
values of the distances between parti-
cles as observed on the image se-
quence. The other parameters are in-
itialised with arbitrary values.
In our implementation, based on the
Metropolis algorithm, slightly better
results were obtained through the use
of a two-dimensional temperature, al-
lowing alternate annealing of binary

bonds (springs) and ternary bonds
(torsional springs). Tests on several
50- and 100-image sequences of a
very simple object (3 particles, 6 pa-
rameters to be identified) have shown
that the algorithm converges to good
estimates (typically £ < 5%) of pa-
rameters in a majority of cases, but on
larger objects (typically from 5 parti-
cles) or with extreme values, some
quantities converge poorly or not at
all. For a given image sequence, the
convergence for each parameter de-
pends then unpredictably on both
their true values and the initial condi-
tions (temperature, time constant...).

3-3 Evolutionary algorithms

For larger systems a more elaborate
scheme is needed. The second method
implemented uses an evolutionary al-
gorithm, closely inspired by the 'ge-
netic algorithms' philosophy [G89].
The principle chosen is to launch a
small population of models (individ-
uals'), provide them with mutation
and crossover rules, giving some sort
of advantage to the 'fittest' individuals
(those having lower cost function val-
ues), and let the population evolve
naturally in the hope that at least a
part of the population will reach a
good approximation of the optimum.
The individuals are described by a
complete set of parameters of the
structure under consideration, this is
their 'genetic code'. The aim is to
overcome the limitations of simulated
annealing in object size, and at the
same time to exploit the empirical fact
that simulated annealing may con-
verge to parameter space points which
are wrong, but some coordinates of
which (i.e. the parameters of some
bonds) are however accurately esti-
mated.

The evolutionary process in the
genetic algorithm implemented here
contains selection, mutations and
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crossovers at each step.
Individuals are first sorted into order
of fitness determined by their cost
function at every step. Next a fixed
proportion pt. of the individuals is
modified by crossovers. Finally a
proportion p,,, of individuals is mod-
ified by mutations.
Coding
Unlike most coding schemes adopted
in genetic algorithms ([G89]), the
method adopted here codes the in-
dividuals with the same numerical
values as in the annealing algorithm,
i.e. a sequence of real values (rather
than a Boolean code). In order to get a
good dispersion, the initial population
is initialised randomly.
Crossover
In the crossover step, the individuals
to be modified (typically pt. = 30% to
60%) are chosen deterministically
from the population as the poorer per-
forming individuals. Their genetic
content is erased; each ordered couple
of values (for example the [length,-
stiffness] couple corresponding to one
binary bond) is replaced by the corre-
sponding couple of values copied
from another individual (parent). The
parents are randomly chosen from the
population, but with a bias which
gives the better individuals a greater
chance of being selected and hence a
higher probability of propagating
elements from their genetic codes.
Selection is thus performed both
through this bias and the poorer per-
forming individuals only being mod-
ified by the crossover process.
Mutations

After the crossover step, mutations
are applied to a proportion p,,, of the
individuals (typically, pm = 1% to
5%): for each parameter, one in-
dividual is chosen randomly from the
worst 95%, and the parameter is mod-
ified for this individual. The mutation
process consists in applying a multi-

plicative noise with a given standard
deviation (or 'temperature') which
may decrease under the control of the
cost function. General experience in
genetic algorithms, showing that tem-
perature does not play the same role
as in annealing and should not be as
systematically decreased, is con-
firmed here. An additional mutation
process introduces random values for
bond lengths (parameters L) calculat-
ed from the observed distances
between particles. The mutations,
introduced here in a non-classical way
because of the continuous nature of
parameters, aim (classically) at main-
taining a genetic diversity in the popu-
lation and allow escape from a local
optimum far from the solution
wanted.

Mutations preserve the 5% most per-
forming individuals: this 'elitist' poli-
cy forces the process to retain the best
configurations found, and the cost
function to keep decreasing with time.
Without this feature one could some-
times observe the cost function in-
crease after typically 100 generations
and the entire population converge to
a poor solution.
Local vs. global cost functions
The normal cost function used in the
algorithm encompasses the whole ob-
ject as described above: the sum is ex-
tended to all the object's particles.
One of the most important features of
this algorithm is the introduction of
alternative 'local' cost functions. To
each individual particle, a local cost
function is associated, and evaluated
from the positions of the first and
second neighbours of this particle in
the object. We use them in a local
version of the algorithm:

• at each generation, instead
of using a single cost func-
tion, the entire collection
of cost functions corre-
sponding to each particle is
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evaluated to get multiple
sorting of the population;

• for each particle, local mu-
tation and crossover pro-
cesses are used, restricted
to the bonds which partici-
pate to the local cost func-
tion; this allows the selec-
tion process to be based on
local rather than global fit-
ness of individual parame-
ters.

• the global cost function
(sum of the local cost func-
tions) is still used to get the
final result at each genera-
tion.

This exploits the fact that a particle's
position at instant t is entirely de-
termined by its first- and second-order
neighbours' positions and speeds at
instant M, and on the values of the
(binary and ternary) bonds it belongs
to. The cost function uses an estima-
tion over a single time step, which al-
lows the optimisation process to be
based on local properties1.

4-EXPERIMENTAL RESULTS

Experimental results on our evolu-
tionary algorithms show a good con-
vergence, using the 'local' version of
the algorithm (see appendix).
Using a population of 100 to 200 in-
dividuals and 5-particle objects (4 bi-
nary bonds and 3 ternary bonds, 14
parameters to be identified), conver-
gence is obtained with the global evo-
lutionary algorithm, generally from
about 100 generations, with a good
success rate and for a mechanical pa-
rameter dynamic range significantly

greater than when using annealing.
On such small objects, the local ver-
sion is roughly equivalent to the glo-
bal one, as the neighbourhoods cover
nearly all the object: it only requires a
greater number of generations, but the
total calculations are equivalent.
On more complex objects (the num-
ber of particles and bonds is related to
the object's complexity rather than to
its physical size), the global evolu-
tionary algorithm becomes extremely
slow in convergence. With the local
version, the number of calculations at
each generation increases linearly
with the number of bonds, but the
number of generations needed no
longer varies significantly with the
object's complexity. Some results on
8-particle objects (8 binary bonds, 10
ternary bonds, total 36 parameters to
identify) are given in appendix.
Fine tuning the mutation process is
essential. Generally, ternary bonds pa-
rameters are more easily estimated
than binary bonds. Introducing binary
bond lengths around their observed
average values through mutations im-
proves the convergence, and suggests
to introduce as much physical knowl-
edge as possible concerning the phys-
ical process, into the algorithm.
Typical results are shown in appen-
dix. In order to obtain an objective
evaluation of the algorithm, we evalu-
ate the convergence quality using an
"external" cost function which is glo-
bal and calculated on the whole image
sequence (1000 images); the identifi-
cation process's internal cost function
only uses a small number of images
(typically 50 to 100: lower numbers
of time samples in the internal cost
function result in loss of per-
formance). In all cases, the external
cost function gives a final assessment

1 If we were using a 'deeper' cost function, e.g. a motion integration over 2 time steps, this would
imply extending the neighbourhood up to the 4th order neighbours. Cost functions based on
longer-term predictions (rather than the v,nc-siep prediction presently used) might help the final
convergence of the algorithm but are not compatible with local evolution.
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of the ability of the model to extrapo-
late the motion of the object, which is
a better criterion than would be a
mere comparison of the mechanical
parameters found, against the values
used when creating the original image
sequence.

5 - CONCLUSION

Our aim is to build particle-based
real-time physical animation tools, us-
ing mechanical object descriptions ob-
tained from the geometry of motion in
real image sequences.
The identification algorithm devel-
oped here, converges in a number of
generations normally independent of
the number of particles involved,
which results in the total cost of iden-
tification being proportional to the
number of particles. This is confirmed
by limited scale experiments.
Besides possible applications such as
scene understanding in physical
terms, or sound and vibration model-
ling, the main aim of this work is
physical model-based animation, ena-
bling the user of an image synthesis
workstation to get physically realistic
animations by using empirical models
built directly from real image data
("Synthetic TV"). Such models, suit-
able both for real-time animation and
(non-real time) identification, may al-
so be of benefit to Virtual Reality ap-
plications, allowing to build mechan-
ically realistic behaviours of the ob-
jects interacting with the user.
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Appendix:
Convergence Test Results

The following diagrams show the ev-
olution of the cost function logarithm
along the genetic identification pro-
cesses (local and global) of a 8-
particle object (36 parameters), using
80 time samples and 150 individuals.
The cost function shown is calculated
on the whole image sequence (1000

images), and is different from the
internal cost function used in the op-
timization process, which uses a small
number of time samples from the se-
quence (typically 50 to 100).
The x-axis represents the number of
generations (in hundreds).
The y-axis represents the tenth of the
logarithm of the cost function calcu-
lated from the whole sequence. The
curve measures how the model found
is able to extrapolate motion.

8 8 . 5 1 , 8 1 . 5 2 . 9 2 . 5 3 1
-8.25

8 9 . 5 1 . 9 1 . 5 2 . 9 . 2 . 5 3 1
-8.38
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The final data above show some numerical results (not all) corresponding to the
preceding graph:

• the first IO lines are the internal cost and parameter values found for
the IO best individuals;

• 1 lth line gives each particle's contribution to the total cost of the best
individual;

• 12th line gives the true values originally used for the animation;
• 13th line, the error factors between true and found values;
• 14th line, some parameters used in the identification algorithm;
• 15th line, the final error calculated as the sum (on the whole se-

quence) of squares of differences between predicted and real posi-
tions/mutual distances between particles.

The first column contains local cost values for the ten individuals; the 10 next
columns display lengths and stiffness of 5 binary bonds, the 6 last columns con-
tain the parameters from 3 ternary bonds. The object used in the test contains 8
binary bonds and 10 ternary bonds (36 parameters to identify).
Here is another typical test result, on a different object with the same number of
particles.

e.ee
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