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Abstract

The 3D image reconstruction method based on Projective Geometry is very attractive
for practical applications because it does not require any camera calibration. It requires
only the knowledge of at least 8 reference points defining two planes. We investigate
here the sensitivity of the results of this method to the measurement errors in the
positions of the reference points both on the image plane and in the 3D world, and
suggest some procedures which should be used in the practical applications of the
method to avoid excessive error amplification.

1 Introduction

One of the objectives of computer vision is the recovery of the 3-D information lost by
the process of recording a scene on the 2-D image plane. This information cannot be
recovered in general from one conventional intensity image only. At least two images
are needed obtained either by the same camera and exploiting the principles of motion
parallax, or obtained by two stationary cameras and exploiting the principles of stereo
vision.

We are interested here in the latter approach and in particular in the problem of
recovering the 3-D shape of a block stone. This is part of a major project concerned
with the optimal cutting of a block of granite into slabs to achieve minimum waste.
Each block is placed on a specially constructed platform and viewed from four cameras
around it, placed at approximately 90° angular distance from each other (figure 1). Each
camera "sees" only three planes of the stone which has approximately the shape of a
parallelepiped. The top plane is viewed by all four cameras but any side plane is viewed
by only two adjacent cameras. So, the problem we are interested in, is effectively trying
to reconstruct the equation of a plane which is viewed by two cameras, call them left and
right cameras, assuming that the correspondence problem has somehow been solved.

There are basically two methods proposed in the literature: one is based on Projective
Geometry [5], and the other on Camera Calibration [6]. The process of camera calibration,
however, is not very practical in the factory floor where blocks of granite are moved about
by cranes. An efficient and robust method is needed which will not require the use of any
calibration devices. Projective geometry approaches to 3-D vision have been used before
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Figure 1: A granite block to be reconstructed in 3D is placed on a platform.

for the recovery of planar surfaces [ 1 ] and for reconstruction without using any calibration
parameters [3]. However, none of these papers includes a detailed sensitivity analysis.

The Projective Geometry approaches rely on the knowledge of 8 reference points
which define two planes in 3D. A good option offered to us is that of using the platform
on which the stone stands. The platform is a robust structure (designed to support tones
of granite) and can be made to have some desired characteristics like to be a right angled
parallepiped with well defined vertices, and faces painted with distinct colours for easy
identification. Each camera can be made to see two faces of the platform for which the
vertices can be easily identified. The world coordinate position of each vertex is assumed
to be known. Thus in each image, we shall have a set of 6 reference points (points A,
B, C, D, E and F in figure 1) forming two planes intersecting along a line in the image.
The method of Projective Geometry can therefore be employed for the 3D reconstruction
of the granite block. The user requirement, however, is that the reconstruction error
should not exceed 1% in terms of the linear dimensions of the block. Given that there
is always some inaccuracy in the estimation of the location of vertices in an image and
certainly inaccuracy in the construction of the platform (in terms of which the world
coordinate system is defined) and the measurement of its vertices (the reference points) it
is very important to check whether the adopted method can be relied upon to cope with
uncertainties.

Detailed experimentation we performed with settings where ground truth was known,
showed that there were cases where the error exceeded 2000%! This motivated us to
look more carefully at the proposed method. In this paper we show the error analysis
performed for the various stages of the Projective Geometry method and the limitations
to its applicability dictated by this error analysis. In section 2 we shall describe briefly the
method as proposed by Mohr [5] and in section 3 we shall present our error analysis. We
shall conclude in section 4.
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2 Projective Geometry Based 3D Reconstruction

2.1 Introduction to Projective Geometry

If A, B, C and D are four co-linear points then their cross-ratio is defined as:

[A,B,C,D] = = = (1)
CB DA

where AB is the directed Euclidean distance of the two points A and B. This means that
AB = —BA. If the barycentric representation of the line is used, i.e.: b + \id = r, where r
is the position vector of any point along the line, \i is a parameter taking real values and b
and d are the base and directional vectors of the line respectively, then the cross-ratio can
be expressed in terms of the [i value of every point in the line /, that is:

[A,B,C,D] = M £ ^ d M 0 ^ ()
Me - MB MD - MA

where HA is the value of the parameter n in the equation of the line for which point A
is defined and jig, /ic and JXD have similar interpretation. The cross-ratio is the basic
invariant in projective geometry since all other projective invariants can be derived from
it. It has been shown [2] that any linear transformation in homogeneous coordinates —
like perspective projection, linear scaling, skewing, rotation, translation, etc — preserves
this cross-ratio. The cross-ratio of a pencil of four coplanar lines l\, h, k and U going
through 0, is defined as the cross-ratio [A, B, C, D] of the points of intersection of the four
lines with any line / not going through 0, and is denoted as [li, h, h, W\.

Let A, B, C and D be four coplanar points, not three of them co-linear. These points
are said to define a projective coordinate system in the plane, V, they belong to. The
projective coordinates {k\, ki, kj) of any point P of V are the three real numbers defined
as:

k{ = [CA,CB,CD,CP]

k2 = [AB,AC,AD,AP]

k3 = [BC,BA,BD,BP] (3)

Any point on V is uniquely referenced by its projective coordinates k\, ki and £3 with
respect to the {A, B,C,D} projective coordinate system.

Consider, for example point P in figure 2. Given its projective coordinates in the
{A, B, C, D} projective coordinate system and the Cartesian coordinates of A, B, C and D
it is a relatively easy task to determine the Cartesian coordinates of P. First, we recall
from equation (3) that k\ is the cross-ratio of the pencil of lines CA, CB, CD and CP. Let
us draw a line / with equation b + pid = r which intersects CA, CB, CD and CP at points
K, L, J and M respectively. Then according to equation (2)

- m)
(4)

Having obtained PLM, the Cartesian coordinates of M can be found — by replacing \i by
MM in the equation of line / — and therefore the equation of the line defined by points C
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Figure 2: Projective coordinates k\, ki andks of a point.

and P. In exactly the same way the equations of lines AP and BP can be obtained. The
Cartesian coordinates of P are given by the intersection of the three lines AP, BP and
CP. It is obvious that to obtain the Cartesian coordinates of P any two lines of AP, BP or
CP are enough, thus only two of k\, fo or £3 are needed. However, in some cases where
degeneration occurs (when point P is collinear with any two reference points) the third
value is necessary.

2.2 Projective Reconstruction using planar points

In this section we briefly describe how projective geometry techniques can be used to
reconstruct a point P in the world coordinate system, given its left and right image
coordinates as well as the exact position and correspondences of a set of eight reference
points {A, B, C, D, E, F, G, / / } , consisting of two sets of 4 coplanar points, {A, B,C,D} and
{E,F,G,H}.

First, the equation of the viewing line OP from the left camera (figure 3) has to be
determined. Consider the first set of reference points {A,B,C,D} and their projections to
the left image plane {a,b, c, d). The projective coordinates k\, ki and £3 of image point/?
with respect to the {a, b,c,d} projective coordinate system can be determined according
to equation (3). If P\ is the intersection of the viewing line OP with the ABCD plane, the
coordinates of P\ can be determined. The projective coordinates of p in the image plane
with respect to {a, b, c, d) are the same as the projective coordinates of P\ in the ABCD
plane with respect to {A,B, C,D} because of the cross-ratio invariance under perspective
projection [4]. Therefore, since the exact positions of A, B, C and D are known, the method
described earlier can be used to determine the world coordinates of P\. In a similar way
the coordinates of point Pi can be calculated. The two points Pi and Pi are enough to
define uniquely the equation of the viewing line OP. Working in exactly the same manner
the viewing line OP from the right camera can also be determined. Then, it is trivial to
find P as it is the point of intersection of the two viewing lines.
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Image Plane

1st Reference Plane

2nd Reference Plane

Figure 3: Each of the reference planes contains four reference points. Note that this figure is only

schematic and in reality the two sets of reference points will be distinct from each other

on the image plane and the quadrilaterals ABCD, EFGH will not be one behind the

other. The viewing line OP will intersect extensions of the planes on which the reference

points lie.

3 Error Analysis

Although the 3D reconstruction technique described in the previous section is accurate
and computationally simple, it is very sensitive to noise. The point is that the equations
involved are non-linear and thus the propagation of error is not straight forward. Indeed,
in non-linear equations it is often the case that the error in the computed quantity is not
only a function of the error in the measured quantity times a constant, but it also depends
on the computed value itself. Thus, there may be ranges of values for which the error is
unacceptably amplified. We shall discuss here the way the error propagates at each stage
of the reconstruction process, starting from the estimation of the error in the calculation
of the projective coordinates on the image plane, and finishing with the estimation of the
error in the calculation of the 3D position of point P.

3.1 Error in the calculation of the projective coordinates
Let us consider the projections of the four reference points on the image plane a, b, c
and d and the projection p of the point whose 3D position we want to determine. The
first projective coordinate of p with respect to the Cartesian coordinates of a, b, c and d,
computed from the pencil of lines with vertex a, can be derived to be:

h = ((axcy - axpy + cxpy + aypx - aycx - pxcy)

(axby — axdy + bxdy - dxby — aybx + aydx)) I

((axcy - axdy + cxdy + aydx - dxcy — aycx)

(axby - axpy + bxpy + aypx - pxby - aybx)) (5)

where (ax, ay), (bx, by), {cx, cy), (dx, dy), and (px,py) are the Cartesian coordinates of points
a, b, c, d and p respectively. Let us assume that each of the reference pairs of coordinates
can be estimated with error normally distributed with zero mean and covariance matrix
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** ?" ) • Then, it can be shown that the variance of the error distribution in

the value of ki is given by:

dax) \db yy

dax dbx
(6)

Applying this formula using ki given by (5) we can derive an expression for the error in
&2 which depends on the location of point p on the image plane. If we assume that the
errors in x and y are independent from each other and identically distributed, we can set
axx - ayy - °2 ^ d dry = 0 in the above expression. Then, the coefficient which multiplies
a1 is the error amplification factor. As long, as this factor is less or equal to 1 the error
is damped but when this factor exceeds 1, the error is amplified. We can derive similar
expressions for the other two projective coordinates of p.

In figure 4 we fixed the positions of the reference points and allowed the position of
p to scan the whole plane. We mark with black the regions where amplification of the
error is expected. Each black stripe corresponds to error amplification due to one of the
projective coordinates. Notice that apart from three small regions around points a, b and
d where two projective coordinates are with amplified error, in all other places p has at
least two projective coordinates which can be calculated reliably, and this is enough for
the determination of the position of point P in the 3D space.

Figure 4: Regions of instability (shown in black).

3.2 From the projective coordinates to the 3D coordinates of Pi

Let us say that of the three projective coordinates of p computed in the previous stage k\
and fe are the most reliable. Point P\ on the plane defined by points A, B, C and D has the
same projective coordinates and the problem now is to find its 3D Cartesian coordinates
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from the knowledge of the 3D Cartesian coordinates of A, B, C and D and k\ and k2. Since
points A, B, C, D and Pi belong to the same plane, a translation and rotation transfonnation
can be found from the world coordinate system to a local coordinate system defined in
such way that its origin is at A, its y axis is along the line AB and the z axis is normal to
the reference plane. The problem is then 2D, and after the straightforward, but tedious,
application of simple Geometric and Algebraic reasoning, we can derive the following
formulae for the coordinates of Pi:

Pixd = kik2(-AxByCx + AxByDx - AxDyBx + AxDyCx + AxCyBx - AxCyDx) •

+k2(-AxCyBx + AxBxDy - CxDyBx + CyBxDx - DxAyBx + CxAyBx) 4

+{BxCxDy - CxDyAx - CxByDx - CxAyBx + CxAyDx+AxByCx)

P\yd = k\k2(+ByDxAy - ByCxAy + CyBxAy - CyDxAy + DyCxAy - BxAyDy) •

+k2(AxByDy - AxByCy + ByCyDx - ByDyCx - ByAyDx + ByCxAy) +

+(BxCyDy - AyBxCy + CyDxAy - CyDxBy + AxCyBy - CyAxDy)

with d = kik2(ByDx-CyDx-DyBx + CyBx+DyCx-ByCx) +

+k2(AxDy - CyAx - DyCx + AyCx + CyDx - AyDx) +

+(BxDy - AyBx - DxBy + AxBy + AyDx - AxDy)

(7)

(8)

(9)

where all coordinates that appear in these formulae refer to the local coordinate system
defined on plane (A, B, C, D). To investigate the effect of the error in the measured positions
of the reference points on the determination of the position of Pi we can proceed in a
way similar to the one described in the previous section. That is, we can derive formulae
similar to formula (6) for the error in the calculation of Pi x and P\y introduced by the error
in the actual positions of the reference points A, B, C and D, assuming that the values
of k{, k2 and kz are known accurately. Then, we repeat the process we followed for the
construction of figure 4: As point p scans the image plane we compute at each position
the values of k\, k2 and £3 for the given set of reference points.

Figure 5: Regions of instability for determination ofP{x.



536

Ignoring the fact that k\ and ki are themselves computed with some error, we put
their values into the formulae we derived for the amplification factors and calculate them
assuming that the error in all coordinate positions of the reference points is the same.
Figure 5 shows the various regions in the image plane where the amplification factor for
the error in P\ is within a certain range. White are the regions where the amplification
factor is less than 1, so they are the stable regions. Each shade corresponds to the
amplification factor increment by 1 as we move away from the white region, with the very
dark regions corresponding to error amplification factor more than 10. Similar analysis
can be performed to find the instability regions for P2 but the only difference with the
above analysis is the reference points used.

3.3 Determining the viewing line

Having computed the 3D coordinates of Pi, the intersection of the viewing line OP with
the first reference plane, we can repeat the process and calculate the 3D coordinates of Pi,
the intersection of the viewing line with the second reference plane (see figure 6).

1 st Reference Plane

2nd Reference Plane

Image Plane

Figure 6: Error is introduced when the distance between the asymptotic lines OP and CD (defined

as the minimum distance between any two points, one belonging to one and other to the

other line) is small.

Let us say that the position vectors of Pi and Pi are P\ and Pi respectively. Then the
position vector of any point P on the viewing line will be given by:

P = (10)

Notice that the parameter /x takes values in the range [0,1] for points which belong to the
segment P\Pi and values outside this range for all other points of the line. In terms of
coordinates the above equation can be written as:

Px = (,l-

Py = (l-

Pz = (1- (11)
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2nd Reference Plane

Image Plane

line of intersection away
from the field of view

Figure 7: Setup of reference planes and points for minimum sensitivity to noise.

If we consider the coordinates of Pi and P2 to be random variables distributed with
variance of and of respectively, (for simplicity we assume that we have the same error
in both coordinates), the above expressions indicate that the variance of the distribution
of the coordinates of P will be (1 — n)2of + ji2of. This expression shows that only if
point P is on the segment P\P2 the error is damped. For P in any other position along the
viewing line, the error is amplified. The closer points Pi, P2 are to each other, the greater
the amplification factor could be because it is proportional to the square of the distance
of P from Pi measured in units of length |PiP2|- A good way to avoid this problem is
to make sure that the two reference planes of the projective coordinate systems intersect
well away from the area of interest. This may not be possible in some cases.

4 Conclusions

In order to apply the method of Projective Geometry to 3D reconstruction we need to take
the following cautionary steps to avoid the introduction of large errors:

1. It is best if the two reference planes are apart from each other and intersect along
a line well away from the area of viewing. As reference points have to be visible
on the image, this requirement implies that a setting like the one shown in figure 7
is appropriate. However, such an arrangement of reference points is not possible in
the case of the granite stone reconstruction. We propose instead to use two sets of
reference planes; planes ABCD and AEFB for all those points that fall on the right
half of the image, and planes AEFB and CEFD for all those points which are on the
left half of the image (as shown in figure 6). Such a setting would reduce the source
of error amplification described in section 3.3 .

2. Provided the accuracy of the measurements of positions on the image plane is known,
the error with which each of the projective coordinates of point p is computed can be
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estimated and the most reliable coordinates of point/? may be used each time. There
are only three small patches on the image plane where there is only one reliable
projective coordinate.

3. Once the projective coordinates of a point have been found, and given the uncertainty
in the measurement of the 3D position of the reference points, the error in the 3D
position of point P can be estimated. This stage, however, is the most difficult
to handle as it seems that unless the points are projected within a region more or
less surrounded by the reference points, we are bound to have amplification of the
error. The only thing we can do is to try to monitor it carefully. One can envisage
the situation where each side of the granite block is reconstructed with the help of
several points. Points which are unreliable then can be dropped out of the process
and only points with acceptable accuracy are kept for the reconstruction stage.

Alternatively, one may consider several sets of reference points and compute the
position of each point under consideration using all of these sets and every time keep the
most reliable set. For the problem of granite block reconstruction, however, this is not
easy. Many calibration and reference points are an impractical luxury in a stone processing
plant. It seems more practicable to attempt to reconstruct each surface of the stone using
several points some of which will have to be discarded during the process.
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