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Abstract

The article describes a colour based recognition system with three novel
features. Firstly, the proposed system can operate in environments where
spectral characteristics of illumination change in both space and time. Sec-
ondly, benefits in terms of speed and quality of output are gained by focusing
processing to areas of salient colour. Finally, an automatic model acquisition
procedure allows rapid creation of the model database.

1 Introduction
In the paper we present a colour-based recognition system that aims to demonstrate the
advantages of selective processing. We do not attempt to analyse the whole image in
the spirit of traditional segmentation methods (eg. [KSK87],[GJT87]); instead we try to
find areas where distinctive colour provides least ambiguous information about presence
of objects from the model database. Using this approach, standard recognition tasks
(eg. What is in the scene?, Where is object X?) can be accomplished without wasting
computational resources in parts of the image where pixel colour analysis is complex, eg.
where mutual illumination effects or specularity must be taken into account.

Pixel colour depends on a number of factors - spectral reflectance of the viewed object,
spectral distribution, intensity and relative position (photometric angles) of illumination
sources. In section 2 we show how effects of changing illumination and geometry can be
predicted allowing recognition in environments with spectrally variable illumination (in
both time and space). Moreover, we do not impose any restriction on spectral reflectance
of objects.

Objects are modelled as sets of coloured patches. A description of each patch for a
number of 'canonical' illuminants is stored in the database. Automatic model acquisition
is generally desirable for any model based system. Considering the number of objects
(> 50), patches and canonical illuminants (4 — 6) it is clearly necessary. We used a
modified MODESP clustering algorithm [Kit76] to accomplish the task .

The present paper makes a contribution to the state-of-the-art in colour processing
as well as our earlier work [MMK93] by:

• operating under illumination with spectral distribution varying in both space and
time

• adopting a recognition strategy with focus of attention
• implementing automatic acquisition of models (learning)

The rest of the paper is structured as follows. The attention mechanism, the overall
structure of the recognition system and the region growing method that expands interest
points into object hypotheses is described in section 4. In section 3 we describe the
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automatic model acquisition procedure. Experiments on two test images are presented
in section 5. Results are summarized in section 6.

2 Surface reflectance, geometry and
illumination

Sensor response of a standard imaging device is well modelled by a spectral integration
process:

•r.
where p* is the response of the k — th sensor at location X of the sensor array, L(X, .) is
the light emitted from the surface patch that is projected on pixel X, and Pk(X) is the
responsivity function of the k — th sensor. The n-dimensional vector px will be referred
to as pixel value, pixel colour or object colour, assuming that light from a surface patch
belonging to a single object falls on pixel X (to simplify expressions we drop X from px

in the text bellow).
Besides the optical properties of the patch, the spectral power distribution (SPD) of

L(X, .) depends on the the relative position of the patch, illumination source(s) and the
viewpoint (defined by photometric angles) as well as on the spectral power distribution of
the illumination source(s). Clearly, any system making use of pixel colour for recognition
must separate the dependence of p on object material from the effects due to changes
in illumination or geometry. In previous work these effects were studied separately,
assuming effectively either constant viewing geometry or illumination of uniform SPD.

The influence of illumination SPD on pixel colour has been studied by researchers
interested in colour constancy [For88] [Mal86][TO90]. The theory of colour constancy is
developed mainly in the context of the Mondriaan world, ie. a world consisting of a single
planar surface composed of a number of matte (Lambertian) patches. Light striking a
Mondriaan world is assumed to be spectrally unchanging and of uniform intensity [FDF].
Under such conditions light reflected from a patch is independent of viewing geometry
and can be expressed as

L(X) = S(X)E(X) (2)

S(A) is a surface reflectance function of the patch and E(X) is the (global) illumination
SPD. Furthermore, surface reflectances and illuminant SPDs are approximated by a
weighted sum of basis functions S;(A) and Ei(X) respectively:

dS dE

S(A)=£Sy(AK E(\) = Y,EiW*i (3)
3=1 . = 1

Substituting equations (3) and (2) into equation (1) we obtain:

Yle< [ Q S](X)E,(X)pk(X)dX (4)

where the expression inside the integral depends only on the the sensor responsivity
pjc(A) and the choice of basis functions for illumination and reflectance. Equation (4)
lies at the heart of most colour constancy algorithms; variations exist in the assumed
number of sensors at each pixel and the dimensionality of the illuminant and reflectance
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spaces (d.E and ds respectively). From eq. (4) it can be seen that if a representation of
a spectral reflectance in terms of the vector of mixing weights q_ is known, then object
colour can be computed for any illuminant described by c.

Unfortunately, comparatively little work has been carried out to establish the ap-
plicability of the low dimensionality assumptions. Surface reflectance of natural objects
were studied by Maloney [MB86]. Maloney concludes that five to seven basis functions
provide an almost perfect fit. In our opinion Maloney's results are difficult to interpret.
On the one hand, the quality of the fit of the first three basis function seems sufficient
for computer vision applications. On the other hand it is unlikely that the same basis
functions are applicable to a larger set of natural and man-made objects. In contrast,
SPDs of a number of artificial illuminants are known. Furthermore, three basis functions
providing practically a perfect fit to all phases of daylight have been found [WS82].

The effects of geometry on SPD of reflected light have been extensively studied
[HB87],[KSK87]. The dichromatic reflection model of [Sha84] is generally regarded to
be accurate for a large class of materials [Tom91]. The dichromatic model states that
reflected light L consists of two independent components: light reflected on the interface
and light due to sub-surface (body) reflection. Furthermore it is assumed that the SPD
of neither of the two components depends on geometry. Therefore:

L(\,g) = mi(g)L',(X) + mb(g)L'b(X) (5)

where g denotes the geometry (ie. the photometric angles), mi(g) and mb(g) are
scaling factors and L[(X) and L'b(X) are the relative spectral distributions of light reflected
by interface and body reflection respectively. The quantities Lj(A), L'b(X) depend only
on the surface reflectance and relative illuminant SPD. Besides geometry, the scaling
factors model absolute changes of illumination intensity. The dichromatic model does
not specify how quantities L' depend on illumination and spectral reflection, therefore its
application always requires the assumption of spectrally unchanging illumination SPD.

It is clear that the assumptions of standard colour constancy approaches (eg. constant
illumination intensity) cannot be adopted by any colour recognition system operating in
non-experimental environments. We adopt a weaker set of assumptions, with a single
exception of modelling surface reflection by a monochromatic reflection model:

L(\,g) = m(g)L'(X) (6)

In our opinion, the simplification is justifiable for a number of reasons. In case of metals
the model is equivalent to the dichromatic reflection model. For dielectrics we neglect
the specular component. Moreover, specularities almost always cover only a fractional
part of an image. Very often the high intensity of specular points saturates the sensor
making colour analysis meaningless.

To predict the effects of changing illumination we substitute for V from eq. (2) into
eq. (5).

L(X) = m(g)S(X)E'(X); (7)

where E'(X) is the relative SPD of illumination. Assuming low dimensionality of
illuminant SPD but a number of sources j = 1 . . . N, (with different SPDs) we obtain
after substituting in (1):

If. dE X2

mj(g) J2 <H \ S(X)E,(X)pk(X)dX (8)

where m-,(g) is a scaling factor covering the effects of change in the illumination
intensity and geometry of the j-th source, €i3 defines the j-th source SPD in terms of
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the basis function Et(X). Replacing the integral (which is independent of geometry and
illumination illumination) we obtain:

where pk' is the colour of the object with spectral reflectance 5(A) as seen under
illuminant Ei. Because both m:l(g) and etJ are non-negative, pixel colour p will lie inside
a convex polyhedron - a pyramid with an apex at £ and edges coincident with vectors
pk '. In the case of artificial illumination we choose illuminant SPD as the basis function
Ei. Values pk' are obtained in a straightforward manner as they are identical to object
colour under the given artificial illumination. The three pk' corresponding to pixel colour
under daylight are approximated by points on the convex envelope of p's from images
taken under different daylight conditions.

Equation (9) shows that the absolute value of pk arbitrarily changes with m](g)
and fij and therefore carries no information about the object. Therefore we project p
onto the chromatic plane (projection on a unit sphere or parameterization by hue and
saturation would achieve the same objective). The pyramid is projected on a convex
polygon whose vertices correspond to canonical illuminants. Such polygons serve as our
model of object colours - pixel colour of a surface patch with arbitrary surface reflectance
will lie inside a convex polygon (regardless of geometry) if illuminated by a light source
well approximated by the set of basis functions we adopted.

With the presented approach we are able to recognise object colour under any mixture
of canonical illuminants. Moreover, we do not have to assume that the whole scene is
illuminated by a single source (imagine a common indoor environment with windows and
lit lamps). Information about illumination source can be easily incorporated into the
scheme; only vectors p corresponding to the illuminants known to be present in a given
environment are taken into account when computing the convex hull.

3 Model acquisition
In the analysis of section 2 we made no assumptions about spectral reflectances of

object materials. As a necessary consequence object colour under a given illumination
can only be predicted as linear combination of its colour under canonical illuminants.
Therefore for each object a colour model must be acquired for every canonical illumi-
nation. Taking into account the number of objects stored in the database(> 50), the
fact that an object can have a number of colour patches, and the number of illuminants,
automatic acquisition is called for.

At present every object is denned as a collection of coloured patches (rather then a
graph). Colour of each patch is characterised by the convex polygon whose vertices cor-
respond to patch chromaticities under canonical illuminations. Recall that any artificial
illuminant is by definition a canonical illuminant; for daylight a number of samples must
be taken; points on the convex hull represent the respective canonical illuminants.

The automatic model acquisition proceeds as follows. First a background image is
taken. Next, an object is presented to the system (fig. l(a)). Pixels that significantly
differ in chromaticity from the background image are assumed to belong to the object
(fig. l(b)). A chromaticity histogram is computed for the subimage (fig. l(d)). A
procedure based on the MODESP clustering algorithm [Kit76] builds the model by first
looking for the chromatic bin with the highest count. Next the immediate neighbourhood
of the maximum bin is searched and the bin with highest count is added to the list of
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(b)

(c) (d)

Figure 1: Model acquisition, (a) Image of the object, (b) Part of the image be-
longing to the object detected from chromatic differences, (c) Labeled patches, (d)
Chromaticity histogram with markers highlighting local maxima. Each maximum
corresponds to one colour patch.
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Figure 2: System structure

bins. The search continues until a local minimum is reached. The counts in the set of
resulting bins provide an approximation of the probability P(chToma\patch). The same
steps are carried out for the unprocessed part of the histogram until no more bins above
a threshold can be found. The number of maxima found corresponds to the number of
coloured patches in the model of the current object.

In the image depicted in fig. l(a) three significant peaks were found. Image l(c)
shows pixels labelled by the patch number; the labelling is needed for only verification.
The clustering procedure is repeated for every object and every canonical illumination.

4 Overall structure

The overall structure of the colour recognition system is depicted in figure 2. We
will first focus on the most complex part of the system - the attention mechanism. The
pixel location on which the module focuses its attention depends, besides the input data,
on the definition of the recognition task, the contents of colour database, model of the
environment and the current state of the region mask. The region mask serves two
purposes. Pixels already processed are marked in the mask and are ignored in further
processing. The mask can be set up prior to processing to control in a natural way the
image area on which colour processing is performed.

The model of environment allows the system to exploit specific information about
the current scene and illumination. The environment defines 1. a set of objects then
can appear in the scene and 2. a set of permissible illuminants. The colour database
manager builds a chromatic model for every patch of every specified object. Each patch
is characterised by a convex polygon in the chromatic plane (defined in section 2) with
vertices corresponding to patch colour under canonical illumination. At present the
system can cope with scenes with up to five illuminants for which patch chromaticities
are stored in the colour database (tungsten filament lamp, fluorescent lamp and three for
daylight). So far we tested the approach in scenes which were lit by natural light and
one artificial illuminant.

The recognition process adopted in our system represents a significant departure from
our earlier work [MMK93] where Bayesian decision rule was invoked at every pixel in the
image. Here prior to recognition the colour database is transformed into a look-up ta-
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ble. The table representing a discretised chromatic plane stores at each cell a list of
patch labels that can assume the chromaticity. The conditional probability P(patch-
label\chroma) is computed for each chromatic cell and the labels sorted according to it.
Briefly the process can be described as follows. A set of points where P(chroma\patch-
Iabel) is non-zero is obtained by rasterizing the chromatic polygon of the patch. The
rasterized polygon is convolved with a smoothing filter to model effects of noise. The
shape of the smoothing kernel depends on the shape of the distribution detected in the
colour histogram during model acquisition. Values in the raster are taken as approxima-
tions of P(chroma\patch-label). The conditional probability P(patch-label\chroma) is
finally computed from probabilities P(chroma\patch-label,) of all patches (with non-zero
P(chroma\patch-label,)) and the probability P(chroma\background).

The chromatic look-up table enables the attention mechanism to implement efficiently
recognition strategies best described as Where (is object X) and What (is in the scene).
In the case of Where the attention selects a pixel with chromaticity that maximises
P(patch-labelx\chroma\. Note that although a list of labels is stored at every chromatic
cell only the first item of a suitably sorted list need be accessed.

Once the point of interest is selected a standard region growing algorithm [Mar92] is
employed to detect a region. The region, together with a list of labels with probabilities,
is passed to the controller. The controller updates the region mask and decides whether
to terminate processing or run another iteration of the attention - region expansion loop.

5 Experiments

We demonstrate performance of the colour recognition system on images shown in
figures 3(a) and 3(a). The colour database contained 51 models depicted in fig. 4. The
environment model specified that daylight and fluorescent light could be present in the
scene. The termination strategy was set as 'find n-best regions'.

The first experiment (fig. 3) shows performance of the recognition system under most
favourable conditions reminiscent of the Mondriaan world. The objects are placed close
to each other on a single plane; it is therefore likely that they are illuminated by light
of unchanging spectral distribution. The sequence of points of attention is shown in fig.
3(d). The points, together with regions into which they were expanded, are depicted
in fig. 3(c). The sequence starts on the red trunks. Next another part on the inside
of the trunks is picked (this part is separated from the main part of the trunks by a
white stripe). The attention point then moves clockwise to the yellow envelope and the
purple sleeve. Next a small triangular patch to the left of the trunks is detected. This
patch is a part of the back side of the pyjama top and has the same colour. The process
was terminated after focussing on the bottom purple part of the pyjama top (the small
triangular patch). Fig. 3(c) shows the position of the attention points in the expanded
regions. It might appear counterintuitive but there is no reason why the points should
lie near the region centers as the colour near the center (of a sufficiently large object)
is on average equally likely to provide the point with least ambiguous chromaticity (in
case of a tie the top-left pixel is chosen). With the exception of the group of holes on the
top part of the pyjama top the expanded regions fit well the the image data. The holes
correspond to almost black points on the dark side of the creases.

The second experiment was carried out using the same objects as in experiment one
(fig. 3). However, the complexity of of the analysis is increased by two factors. Firstly,
the proportion of daylight to fluorescent light is higher for objects closer to the window
(on the left edge of fig. 3(a)). Secondly, objects are not placed on a planar surface.
Results of the second experiment are presented in the same way in fig. 3. The point of
attention shifted from right to left, ie. from the trunks to the pyjama top.
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(h)

Figure 3: Experiments 1 and 2. (a) (e) Image of the scene. (b)(f) Regions expanded
from the first six (resp. four) attention points superimposed on the image. (c)(g)
Regions with attention points, (d) Movement of the point of attention in exp. 1.
The sequence starts on the trunks in the left part of the image, (h) Movement of
the point of attention in exp. 2. The sequence starts on the trunks on the PUMA
robot arm.
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6 Conclusions
We have presented a colour based recognition system with three novel features. Firstly,
the proposed system can operate in environments with spectrally uneven and chang-
ing illumination. Secondly, benefits in terms of speed and quality of output are gained
by focusing processing to areas of salient colour. Finally, an automatic model acquisi-
tion procedure has been implemented. The results presented in section 5 how that the
approach is viable.
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Figure 4: Fifty selected objects from the database.


