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Abstract

In this paper we present our work on using intensity feature spaces to
study the relationship between voxel values in registered and unreg-
istered medical images. By taking a simple image model we predict
structures that we might expect to find in an intensity feature space
produced from different modality images of the same scene. We show
how this structure will be modified by image noise, misregistration
and differing point spread functions of the two modalities. We show
examples of such structure in feature spaces created from clinically ac-
quired Magnetic Resonance (MR) and Positron Emission Tomography
(PET) image data. We show how two simple measures of voxel sim-
ilarity based on these feature space observations, a modified variance
of intensity ratio and the 3rd order moment of the feature space his-
togram, can be used to quantify image misregistration. The 3rd order
moment measure is then used with a genetic optimisation algorithm to
automatically register pre and post Gadolinium injection MR images.

1 Introduction

Automating medical image registration is becoming an increasingly important
goal. It forms the basis of image processing techniques to combine information
from the different modalities which are now frequently acquired for many patients.
Such combined representations of patient images have been shown to assist in the
interpretation of the complementary information provided by the modalities [1].

One approach to registering visually similar images is to manually or auto-
matically locate a small number of equivalent features such as points or surfaces
present in both modalities [1, 2, 3, 4, 5, 6]. This requires either a considerable
amount of user interaction or a solution to the difficult problem of reliably and
automatically segmenting the same feature from different modalities.

An alternative method which we examine in this paper is to create a measure
based on a simple function of all corresponding voxels in the two images at a
given orientation. This measure should have a minimum or maximum value at
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registration which we can then search for in the parameter space of the three
translations and three rotations using an optimisation technique.

The simplest voxel similarity measure is voxel correlation. For this to be ef-
fective there must be a linear relationship between intensities of voxels in the
two modalities. This is not the case for common combinations of medical image
such as MR-PET and MR-CT and published work using this technique has been
less successful than alternative approaches of landmark registration and surface
matching.

Another more successful voxel similarity measure, the Variance of Intensity
Ratios, proposed by Woods [8, 9] has been used to successfully register both PET-
PET and PET-MR image pairs of the brain. The main drawback of this technique
for PET-MR registration is the need for manual segmentation of the MR brain
image to remove the scalp and skull. We have previously shown that a modification
of this measure can be used for skull base MR-CT registration provided there is
sufficient axial sampling [10].

Van den Elsen [7] has proposed a method using the correlation of an image
intensity ridge operator. By choosing an appropriate scale the bone ridge from
MR and CT can be extracted and the two gradient images correlated to find the
registration transformation.

The success of these approaches encouraged us to devise a methodology for
further investigating voxel similarity measures.

2 Method

We have accurately registered many dozens of medical images using anatomical
landmarks [1]. This provides us with a large number of reference datasets with
which to evaluate alternative automated registration algorithms. We have devised
two techniques for assessing possible voxel similarity measures: feature space se-
quences and similarity measure plots.

2.1 Structures in Intensity Feature Space

A possible way of examining the effect of misregistration useful for devising appro-
priate voxel similarity measures is to construct 2D distributions or feature spaces
of image intensities (or other voxel features) of two images at registration and for
a sequence of known misregistrations for each degree of freedom. We term these
feature space sequences. A feature space of two images is a two dimensional his-
togram of the value of a numerical image feature from one image plotted against
the corresponding value from the other image.

The feature space may be constructed from all voxels where there is corre-
spondence (i.e. overlap) between the two images. The image feature is usually
voxel intensity, but could also be a derived value such as the output of a gradient
operator or texture analysis. A feature space sequence can be calculated for each
degree of freedom of the rigid body transformation.

To understand the structure seen in feature space sequences it is informative to
calculate the expected appearance using a simple model. Consider a tomographic
slice consisting of two regions, a vertical band of uniform intensity surrounded by
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a uniform background intensity. The image intensities from image modality A,
ciij, are given by:

•2 u< i < v
a-ij = a\ otherwise

and, similarly assuming identical voxel sizes for imaging modality B, image inten-
sities are given by:

, _ ( 62 u < i < v
13 \ b\ otherwise

where u and v are the bounds of the vertical band in the x direction and 0 < i <
xmax and 0 < j < ymax. This is illustrated in figure 1. A feature space of this

Vmax

Figure 1: A simple image containing two intensities.

image will consist of two points at coordinates (ai,6i) and (02,62) of intensities
equal to the number of voxels within each region with zero elsewhere. With mis-
registration in the x direction by t pixels two other points will appear at (01,62)
and {a-i, b\) of intensity tymax as shown in figure 2.
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Figure 2: Changes in Feature Space due to misregistration of a simple image. (Left
registered, Right misregistered)

With the addition of noise in each modality the feature space image will be
convolved with the noise distribution functions of image A and B, in the A and
B axes respectively. The feature space with image blurring, by impulse response
functions IAT and IBT in imaging modalities A and B respectively, will consist of
the original two high signals at (ai,6i) and (02)62) connected by an arc with the
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parametric equation in p for the coordinates of arc (ap,bp) given by:

aP =

bp = &1 + 2 J lB(r-p)(b2 - bi)
r=u

When the blurring functions are the same in the two modalities this parametric
equation describes a straight line for 61 < 6p < 62 (see figure 3, left) with equation:

(aP - a i ) / (a 2 - aj) = (bp - &i)/(62 - &i)

Image A
Intensity

Image A
Intensity
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Figure 3: Feature space after image blurring (left registered,right misregistered).

The intensity at each point, p, along this arc in feature space is propor-
tional to the sum of the products of the inverse of the impulse response functions
((^(o-p)^B(u-p))"1 + (IA(V-P)IB(V-P))~1) and the inverse of the arc length. At
misregistration by a distance t in the x direction the parametric equation of the
arc becomes:

bp - lB(r-p-t)(b2 ~

This equation generates an arc between points (ai, 61) and (a2,62) similar in shape
to the hysteresis curve of magnetisation of ferromagnetic material (see figure 3,
right). The greater the misregistration the greater will be the area enclosed by the
curve, until at the limit when the arc will describe the rectangle (ai,b\) (ai,&2)
(«2, 62) (02,61). The area between the two curves is a function of misregistration,
contrast between the two regions and the impulse response functions of the two
imaging modalities.

In a real image the feature space will consist of a superimposition of a number
of points connected by arcs with intensity proportional to image blurring. Image
noise will blur the feature space and misregistration will generate hysteresis type
curves from the connecting arcs. The misregistration of each boundary element
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along its surface normal will determine the area enclosed by the corresponding
hysteresis curve in feature space. For convoluted structures surface orientations
will be widely distributed and the feature space for a particular misregistration
will be a superimposition of multiple hysteresis type curves, but the envelope of
these curves will correspond to the maximum misregistration perpendicular to any
element of the surface.

2.2 Feature Spaces of Clinically Acquired Images

We have generated feature space sequences from various combinations of MR, CT
and PET images in the head. In this paper we will concentrate on the structure
found in MR-PET and MR-MR combinations. All data was initially registered us-
ing our interactive point landmark system [2]. The MR-PET image pair consisted
of a Tl weighted (voxel size 0.859mm x 0.859mm x 2.5mm) MR acquisition and
an FDG (voxel size 2.0mm x 2.0mm x 3.75mm) PET scan. The MR-MR pair was
a Tl weighted pre Gadolinium sequence (voxel size 0.898mm x 0.898mm x 2.0mm)
and a Tl post Gadolinium (voxel size 0.898mm x 0.898mm x 1.0mm) image (the
patient having been removed from the scanner for injection between scans).

Prior to the creation of the feature spaces the lower resolution image was
resampled using tri-linear interpolation upto the resolution of the higher resolution
image. For the work presented here all images were filtered with a Hanning window
to give a full width half maximum of the impulse response function of 10mm. This
reduced the effects of noise and ensured both images contained the same scale of
information. All feature spaces shown are calculated on a 256 x 256 matrix with
appropriate binning applied over the range of intensities present in each modality
(usually 0-32767 for PET data and 0-4095 for MR data) and are shown with
appropriate thresholding to display the low intensity structure.

2.3 Similarity Measures

We have developed two simple registration measures based on observations of
the feature space structure. Firstly by limiting the range of intensities used in
the two modalities when calculating Roger Woods' coefficient of the variance of
intensity ratio for MR and PET registration we hope to remove the need for
pre-segmentation of the MR data. Secondly by using the third order moment
of a histogram of the feature space values themselves we hope to find a measure
sensitive to the overall dispersion in the feature space due to mis-registration.

A simple quantitative indication of the effectiveness of a similarity measure is
gained by examining plots of its value as one of the six degrees of freedom is varied
around its value at registration. An ideal misregistration measure has a minimum
value at registration, and increases monotonically with misregistration. It must
be emphasised that this does not sample all of the parameter space, and there are
likely to be many local minima (or even the global minimum) that are not visible
in the one dimensional plots.
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3 Results

3.1 Feature Space Structure

Feature space sequences for the MR and PET-FDG image volumes are shown in
figure 4 and 5 and for the MR image volumes with and without Gadolinium in
figure 6. These feature space sequences are of very different overall appearance
but they share common characteristics predicted in section 2.1:

• Diagonal features, corresponding to blurring between adjacent regions in the
image volumes, disperse with misregistration.

• The hysteresis type patterns show clear bounds, presumably caused by the
maximum misregistration along surface normals.

• Except at the origin, the brightest feature space pixels decrease in intensity
with misregistration.

• The number of low intensity feature space pixels increases with misregistra-
tion.

(a) (b) (c)
Figure 4: Feature spaces created from a misregistered MR (horizontal scale) and
PET (vertical scale) image pair: (a) registered, (b) x axis (cranio-caudal) rotation
of 5 deg., (c) x axis rotation of 10 deg.

3.2 Similarity Measures

Figure 7(a) shows the cost function with misregistration generated from the vari-
ance of intensity ratios for the PET-FDG and MR image volumes (PET-FDG in-
tensity divided by MR intensity). The functions are reasonably well behaved with
monotonically increasing cost with misregistration except, for x and z rotations.
Also for x and y translations the cost function starts to decrease once misregis-
tration exceeds about 5mm which is probably related to the resolution distance
of the image volumes. Figure 7(b) shows that, by selecting a predefined band
of intensities to perform the analysis, the cost function for x and z rotations are
considerably improved. The intensity ranges used in the MR and PET are shown
in figure 4(a). Figure 8 shows the cost functions for the pre and post Gadolinium
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(a) (b) (c)
Figure 5: Feature spaces created from a misregistered MR (horizontal scale) and
PET (vertical scale) image pair with a lateral translation of 2mm (a), 4mm (b)
and 10mm (c).

(a) (b) (c)
Figure 6: Feature spaces created from an MR pre Gadolinium (vertical scale), MR
post-Gadolinium (horizontal scale) image pair: (a) registered,(b) lateral transla-
tion of 2mm and (c) 5mm.

MR image volumes calculated using the thrid order moment of the feature space
histogram. These plots demonstrate that the cost increases almost monotonically
with misregistration in each of the degrees of freedom. These image volumes have
been successfully registered automatically with this cost function using a genetic
algorithm[ll] with a population size of 100 and 30 generations, at two scales.

4 Discussion

We have devised a methodology for further evaluation of voxel similarity measures,
in particular the generation of feature space sequences. All the feature space se-
quences produced shared common types of structure which may provide strong
cues for registration. The two simple measures we have developed based on our
feature space observations have shown improved sensitivity to image misregistra-
tion.

The observed cues only exist when registration of surface features is within
the resolution distance of each image. One possible approach may be to blur
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Figure 7: Cost functions calculated using the Variance of Intensity Ratios of the
MR-PET image pair using the full range of intensities (top), and a limited range
of intensities (bottom).

images to a greater extent in a multiscale approach. Work is currently underway
to investigate the effects of varying scale on feature space structure. Alternatively
feature spaces created from gradient operators such as those used by Van den
Elsen [7] may provide more powerful registration cues.

One limitation of the voxel similarity approach to registration is that at any
particular orientation the measure is only a function of the region of overlap of the
two images. This is often a problem with clinically acquired data when one of the
datasets covers a much more restricted volume than the other. The measure does
not continue to increase with misregistration when there is no area of overlap of
corresponding objects in the two datasets.

These types of registration measure are robust to many types of noise because
they are performed on large numbers of image voxels. They may be particularly
suited to the problem of local re-registration to correct, for geometric distortion. An
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Figure 8: Cost function calculated using the 3rd order moment of the feature space
histogram of a pre-Gadolinium and post-Gadolinium image pair.

example would be the use of CT data to correct MR image distortion following a
global registration of the two. It is important to understand the types of distortions
that can occur before these types of corrections can be applied. More work is
needed to devise and test appropriate similarity measures, but the approach shows
great promise for producing an accurate, automated method for registration of
voxel datasets in 3D medical imaging.
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