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A new hierarchical segmentation algorithm is described. Its computational complexity and
memory requirements are detailed, showing it to be practicably applicable to images of useful
size. A simple modification of the algorithm adapts it to produce hierarchical segmentations that
satisfy a constraint set. Results are given showing that this adapted algorithm can be used as the
basis of a semi-automatic object definition tool or as the interface between a low-level image
description module and a high-level module coding for knowledge and expectation.

1 Introduction

The goal of completely automated segmentation is still distant for most
applications where the environment cannot be manipulated to produce
especially simple images. Instead, either a purely manual technique, or an
automatic stage followed by editing915, is used. Even with a system that
perfectly delivered the image objects seen by a naive, and otherwise average,
observer; manual editing would still be necessary as sometimes domain (e.g.
anatomical) knowledge or application requirements supplement or override
what is present in the image. It is therefore essential to develop techniques
for editing/refining/constraining automatic segmentations. In addressing this
problem we are also addressing the very general problem of how high-level
computational modules coding for knowledge and expectation should interact
with low-level modules which build descriptions of the image.

We have previously argued7'8 that an important property of an image
description is that it should express object/sub-object relationships. This is
particularly the case in medical imaging because much anatomical knowledge
is expressed in this form. A description that fulfils this requirement is
hierarchical segmentation, which describes an image as a set of regions, with
each region being composed of sub-regions, which are themselves composed
of sub-regions, and so on. In this paper we present our algorithm for
computing hierarchical segmentations of images and then describe how it has
been extended so that the resulting description satisfies constraints of quite
a general character - e.g. there should be a region containing points a, b and
c but not containing x,y and z. We present applications of the technique with
both user-supplied and automatically generated constraints.
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2 Hierarchical Segmentation

A hierarchical segmentation of an image is a tree structure by inclusion of
connected image regions.

2.1 Hierarchical Clustering

Hierarchical segmentation algorithms may be distinguished in various ways:
they may be agglomerative or divisive; they may use local or global merging;
and they may be binary or n-ary.

Agglomerative algorithms construct hierarchies bottom-up by iteratively
clustering from pixels to root; divisive algorithms proceed top-down by
recursive sub-division of the image17. We use an agglomerative approach, since
divisive algorithms are of greater computational complexity due to their
inherent non-locality.

Our algorithm, like other agglomerative algorithms, maintains a current
partition of the image that is altered during the course of the clustering.
Initially, the partition is the finest possible with a separate region for each
pixel. The partition is then iteratively simplified by merging pairs of adjacent
regions. Eventually, as a result of merging, the partition consists of a single
region (the entire image) at which point the process is complete. During
clustering, information of the form - "ris a sub-region of s" - is accumulated
in a hierarchy structure. At each iteration the choice of regions to merge is
dictated by an edge strength calculated for each pair of adjacent regions.
Other authors15 merge only the pair of regions separated by the globally
weakest edge, which is a global merging strategy. We have opted for a local
merging strategy, meaning that we merge those pairs of regions with locally
weak separating edges. An edge between two regions is locally weak if it is
weaker than any other edge involving one of the two regions. Local merging
is computationally faster than global merging and is therefore preferred.

We have found a binary hierarchy (0 or 2 sub-regions) to be rather inflexible
and the more general n-ary hierarchy (variable number of sub-regions) to be
a more faithful representation of image structure. We explain this with an
example. Consider a three element graph a-b-c to be clustered. There are
three possible hierarchies -

HI {a,b,c} {a} {b} {c}
H2 {a,b,c} {a,b} {a} {b} {c}
H3 {a,b,c} {b,c} {a} {b} {c}

If we are restricted to binary hierarchies then HI is inadmissible. This is a
problem if our hierarchy preference criterion has an associated uncertainty;
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as a consequence of, for example, the finite precision of the input data. Such
an uncertainty might make it illusory (and hence misleading) to distinguish
between hierarchies H2 and H3, in which case HI should be preferred.

Previously7'8, we have constructed n-ary hierarchies using a multiple merge
scheme, in which clusters of two or more elements can be formed. It is
difficult to incorporate constraints within such a scheme. Instead, the current
algorithm collapses a binary hierarchy, formed by pair-wise merging, into an
n-ary hierarchy5. Collapsing is achieved by removing regions from a binary
hierarchy, thus producing an n-ary hierarchy e.g.H2-{a,b}=Hl. Our choice of
regions to delete is based on consideration of the vertical pattern of merge
costs (/.e. strength of edges overcome informing regions) across the hierarchy.
We require that these costs should be strictly increasing as one ascends the
hierarchy i.e. the individual sub-regions of a region should be individually
more homogenous than the entire region. It is simple to detect such cases and
remove the corresponding regions.

2.2 Edge Strength Calculation

Two properties that are known to lead to 'good' regions are homogeneity and
stability of the bounding edge12. Homogeneity can be defined in a relative
form as the condition that parts of an object should be more similar to each
other than they are to elements outside the region. Stable edges are those
whose position does not change greatly with blurring (or similarly, increased
viewing distance). Relative homogeneity is enforced by using an edge strength
defined as the absolute difference between the mean luminances of the two
regions. Locally weak edges, thus defined, are pairs of regions whose
luminance level is more similar than that of either of the regions to any other
of their neighbours. We define the stability of an edge by looking at its
trajectory over (Gaussian) scale11. Edges that have a vertical trajectory
(equating scale with height) tend to be perceptually strong2; edges with a
flatter trajectory seem to have less perceptual significance. The angle of this
trajectory (relative to the constant scale plane) is atan(IVLl / | ^ L | ) , where
L is the luminance. We combine these two considerations together into a
single edge measure IVLLatan(IVLj /1 V*L |) which reflects both the strength
and the stability of the edge. We have described this edge strength previously7

and used it with our earlier hierarchical segmentation algorithm, it is also
effective with the new algorithm. The gradient term (IVLl) is the absolute
difference between the mean luminances of the two regions, the Laplacian
term (^L) is the average of the mean Laplacians of the two regions. To make
this calculation efficient the size, mean luminance and mean Laplacian of each
region is stored. When a new region is created these attributes are readily
calculated from the attributes of its constituent regions.
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2.3 Representation of Adjacency

Previously we have used an implementation of a general region-adjacency
graph structure for representing the current partition that is simplified during
clustering. This has the advantages of making it trivial to determine which
regions are adjacent and guaranteeing that we need only perform the
(computationally expensive) edge strength calculation once per edge.
However, it has the disadvantages of being rather laborious to update as a
result of merging and being inefficient in memory. The inefficiency is due to
the fact that the data structures can represent any graph whereas they only
need to be able to represent any planar graph. A simpler scheme is to label
each pixel with the currently active region to which it belongs. Edges do not
then have to be represented explicitly and can be detected by scanning the
image looking for adjacent pixels with different labels. This is more memory
efficient and leads to a simpler algorithm. The disadvantage is that the edge
strength calculation is repeated for each pixel crack making up an edge
between two regions. A synthesis of these two approaches is possible. It relies
on the fact that given a planar graph it is possible to assign each link of the
graph to one of its end-nodes in such a way that each node has at most three
edges assigned to it. This constraint can be utilized by using a fixed memory
approach to representing region adjacency. We allow three adjacency pointers
per region. As the label image is scanned and an edge is discovered this fact
is recorded by setting one of the pointers in one of the regions to point to the
other region. If the same pair of regions is encountered later in the scan of
the image then this fact is readily detected and the edge strength is not
unnecessarily recomputed. This innovation has allowed us to decrease the
memory usage of the algorithm without increasing the computational
complexity. The average time required to construct a hierarchical
segmentation of a 1282 image is 10.4s on a SPARC IPX; approximately 74
bytes/pixel are required for this computation.

3 Satisfying Constraints

The form of constraint which concerns us is: "there is an object containing
internal points a,b,...but not containing external points xj,.. ."Such a
constraint may be understood as a partial labelling: the internal points are
labelled with one label, the external points with another label and all other
points are unlabelled. The problem then is how to extend the partial labelling
to a full labelling which will completely define the required object.

The hierarchical segmentation algorithm is easily adapted to perform this task
by preventing the formation of regions containing both internal and external
points. This is difficult to achieve in a multiple merging scheme but easy in the
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binary merging scheme that we use. It is accomplished by treating as
non-existent those edges that lie between pairs of adjacent regions, one of
which contains an internal point and the other an external point. The process
terminates with a partition in which every region contains an internal or an
external point, but not both, and adjacent regions are never both internal or
both external. Collapsing the binary hierarchy into an n-ary hierarchy does not
present any additional problems.

3.1 An Editing Tool

The manual interactions of semi-automatic segmentation tools are generally
of two types: parameter setting to control the automatic stage of the
segmentation and geometric editing to refine the results of the automatic
stage. This section describes a method in which the distinction between the
automatic stage and the editing stage no longer exists. We have reduced the
interface to only two interactions: marking points inside the desired object,
and marking points outside the object. As points are marked a region is
displayed that satisfies the points marked so far. The region is computed using
the constraint satisfaction method described above.

Although it is possible to delete and rebuild (with the new constraint) the
entire hierarchy each time a point is added this is rather slow. Fortunately, we
have found that it is possible just to delete the top portion of the hierarchy
consisting of those regions that contain internal and external points, and then
to rebuild from this partially deleted state upwards (whilst satisfying the
constraints, including the new one). This produces almost identical results with
greatly reduced computational cost. It is worth noting that inferior results are
obtained if a binary hierarchy rather than an n-ary hierarchy is used. The
reason is not that the merging proceeds differently given the same initial state
(it does not), but that the removal of the inconsistent portion of the hierarchy
leads to a different state depending on whether a binary or an n-ary hierarchy
is used. This is supporting evidence that the rule that we have used to reduce
the binary hierarchy to an n-ary hierarchy is a reasonable one.

Fig. 1 illustrates the editing tool in action. Panel 1 shows the original image,
a 70x86 transaxial MR image showing the lateral ventricles. The task being
performed is extraction of the left ventricle including the faint upper portion.
In the second panel two points have been marked by the user: an internal
point (black) and an external point (white); which is the minimum required
to define an object. The region shown has been constructed by the technique
described. Subsequent panels show the region changing as more points are
added. With an image of this size (running on a SPARC IPX) the new region
is drawn without noticeable processing lag. Notice that the target region can
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be enlarged or reduced by the process of adding points. Note also that the
addition of a point can have a widespread effect. The sequence of images
terminates with a reasonable segmentation of the left ventricle. The reader
may see certain pixels that he would include or remove from the target object,
actions which are easily performed by the addition of further points.

The following table shows timings for three different images (all times on a
SPARC IPX). The resulting segmentations are shown in figures 2,3 and 4. The
object extraction times are the actual recorded times and so are the sum of
processing time, interaction time and looking time (i.e. deciding what to do).
For these worked examples the user had the additional facility of being able
to add a whole line of interior or exterior points. The manual segmentation
time is the time taken to outline the object using point marking and line
drawing. The assisted times are on average only 59% of the manual times.
The manually segmented images are not shown but informal inspection
suggests that the resulting segmentations are slightly inferior.

Image

Cerebral X-ray Angiogram

Head MR

Cardiac MR

Size

1002

1202

702

Hierarchy
Creation

4.10s

5.60s

1.65s

Manual
Segmentation

90s

120s

72s

Assisted
Segmentation

45s

70s

50s

Fig. 2 shows the extraction of the peri-callosal artery from a cerebral
angiogram. This illustrates how the editing tool can be used to select between
multiple edges in an image. The need for this is particularly evident in a
projection image such as this. Where two vessels cross there are (at least) two
distinct objects that can be discerned. By placing external points along the
edge of the desired vessel we cut off unwanted side-branches and define it
throughout its entire course. The image also illustrates the utility of allowing
lines of points to be placed. Fig. 3 shows the extraction of an area of white
matter from a noisy transaxial MR image. This image demonstrates that no
additional mechanism is needed to define holes in the target region. Fig. 4
show the extraction of several blood vessels (cross-sections) from a cardiac
image. It demonstrates the extraction of a non-connected object.

3.2 Imposition of Anatomical Knowledge

The constraint satisfaction method that we have described can also be used
with automatically generated constraints. One possible architecture for this
would be coupled low- and high-level modules, with the low-level module
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computing descriptions of the image (e.g. hierarchical segmentations) and the
high-level module guiding the low-level module by means of constraints
suggested by expectation or partial matches to stored models14. What the form
of such constraints should be and how a high-level system should generate
them are open questions. In the following we present an example in which
anatomical knowledge generates constraints on the segmentation.

Multiple sclerosis (MS) lesion extraction from MR images is an important and
difficult application. Since lesions appear as bright areas on a darker
background, it has been possible to use thresholding techniques for their
extraction16. The difficulty is in choosing the appropriate threshold. Whilst
pixels of sufficiently high value (say L>Tf) can be classified as being lesion
with some confidence, and pixels of sufficiently low value (say L<Tb) can be
classified as non-lesion with similarly high confidence: since 7}>71

ithere will
be many pixels which cannot be easily classified in this manner. In practice it
seems standard to accept a systematic under-estimation of lesion volume
rather than risk the uncertainty of bringing Tf and Tb closer.

Fig. 5 shows an alternative approach. Pixels in this lesion image range in value
from 0 to 124. We have set Tf= 76 and Tb=54. These thresholds have been
used to define a partial labelling of the image. The labels show up as white
(background) and black (foreground) points. Pixels intermediate in value
between the two thresholds are not labelled. The regions displayed satisfy the
labelling and have been generated in the manner already described. The
blob-like structures are all correctly identified MS lesions; the more elongated
structures near the centre of the image are areas of peri-ventricular effusion
which is also counted as abnormal for the purpose of lesion volume
measurement. The only incorrectly identified structures are portions of skull
and scalp; it is straightforward to identify and removed these. The outlines of
the lesions are satisfactory and superior to the results of pure thresholding.

4 Concluding Remarks

The hierarchical segmentation algorithm that was presented in section 2 is an
improvement over our previous techniques6'78. The use of a fixed memory
approach to the representation of adjacency has allowed us to develop a fast
implementation which is not excessive in its memory requirements.

As we have shown, using an agglomerative local merging scheme allows simple
satisfaction of constraints. We have described how this may be used as an
interface between imposed knowledge (top-down) and image description
(bottom-up). Automatic constraints of the required form could be generated
by processes more sophisticated than thresholding. Local methods which
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classify points on the basis of differential invariants at multiple scales3 are one
option, whilst multi-local shape information could be imposed using flexible
templates4 which attempt to locate object centres rather than object edges.

Finally, we mention that the original task for which the constraint satisfaction
method was designed was multi-scale linking. This problem (being tacked by
several centres10'13'18) is that of amalgamating descriptions at different scales
into a single description. In such a process coarse scale descriptions are
imposed on the interpretation of finer scale images8. We believe that
constraint satisfying hierarchical segmentation is well-suited to this task.
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