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Abstract

This paper describes several new image understanding methods based
on parallel operation. There are several constraint satisfaction ap-
proaches using a energy minimization. We show how we reconstruct
three dimensional surfaces from contours without elevation data and
sparse points of known elevation data by using this approach. We
also introduce Active Net using this approach and apply this model to
segmentation and binocular stereo matching . We experimented with
these energy minimization approaches to solve the problems of early
and intermediate level of computer vision and show some of the results
of our recent research.

1 Introduction

Image understanding problems in the real world are regarded as an inverse prob-
lem. Such a problem often becomes an "ill-posed problem" as it can not be solved
analytically. In the field of computer vision, there have been many attempts to
model and simulate various aspects of the human vision system. However, some
of these lack a theoretical basis. Recently, the energy minimization approach has
become one of the principal image understanding techniques as it has been able
to provide a common mathematical basis for problems of early and intermediate
level vision.

There are several energy minimization approaches such as neural networks,
stochastic relaxation, regularization, simulated annealing and other parallel meth-
ods [1]. A lot of constraint satisfaction approaches [2] exists in the image un-
derstanding field as shown in Figure 1. The regularization method involves the
minimization of some energy function which is defined as the sum of the penalty
function and of the stabilizer function. The penalty function is the constraint that
describes the conformity of the information extracted from the image. The stabi-
lizer function describes the constraint which applies to the whole solution space
and frequently takes the form of a smoothness constraint. There have been a
number of attempts to solve this kind of problem using the regularization method
which changes an ill-posed problem into a well-posed problem by imposing some
constraints on the solution space.
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Figure 1: Stream of energy minimization approach.

2 Three dimensional surface reconstruction

We reconstruct three dimensional surfaces from sparse elevation data and dense
contours without using elevation values of topographic map. If we knew the eleva-
tion of each contour line, this problem could be solved by a simple transformation
between three-dimensional models. Contour lines in actual maps are often broken
making the tracking of contour lines difficult. It then becomes necessary to restore
contour lines by examining neighboring contour lines.

2.1 Formulation

Regularization is an approach that avoids the above problems. We define three
different constraints on reconstruction evaluation of the value u of the desired sur-
face function over a given area of size mxn. Surface reconstruction using contour
line information is performed by minimizing the following energy function:
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E — Esmooth + ^Edata + ^Econtour, (1)

where A is the weight parameter of the penalty function and fi the weight
parameter controlling the strength of the contour line constraint. Edaia is used as
a penalty function which uses the discrepancy between given sparse elevation data
v and the surface function u.

m n

Edata =

which is used as a penalty function. Here S(jj) has the value of 1 at the point
where the evaluation values are given and the value of 0 otherwise.

Although the contour lines extracted from topographic maps do not have ele-
vation values, we can obtain the directional components (Ax, Ay) of contour lines.
A picture generated by setting the line of sight to be horizontal would have con-
tour lines that are seen as straight parallel lines. We introduce another penalty
function Econtour for a contour line constraint. The elevation value for all pixels
on the same contour line should keep same value. For this constraint, we use a
function:

Oil Oil o

^ + ^ (3)

which should be minimized for all contour line pixels [4]. Because the summa-
tion is carried out for all image pixels, the values Ax and Ay for every pixel which
does not fall a contour line are set to 0.

Esmuoth is used as a smoothness constraint. The quadratic function:

7 l (4)

is used as a stabilizer function [3].

2.2 Evaluation

The extraction of contour lines was done by choosing pixels that are close to
the color used for representing contour lines. After thinning and removing branch
points, the lines with length less than 2 pixels were considered as noise and ignored
[4]. In order to assign directional cosines, we used the value 1 for A and the value
1 for n of equation 1. We tried to reconstruct the topography using the texture of
the contours shown in Figure 2.

We presented a method for reconstruction of a 3D-surface from a contour im-
age without relying on dense elevation values. Complicated surfaces were recon-
structed by the simple procedure of minimizing the energy function defined for
the image. The contour line constraint was derived by considering only the hor-
izontal nature of contour lines, and the regularity of their elevation values was
neglected. We have successfully applied this method to topographic maps and got
good results as shown in Figure 3.
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Figure 2: A topographic map.

Figure 3: Reconstructed topography result.
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3 Active Net

Active Net [6] is a simulated two dimensional elastic network model which shows
both active and dynamic behavior. The energy function of the Active Net has two
parts ; an internal strain energy of the network and an image energy which attracts
the Active Net towards the image features. The network deforms its shape so as
to minimize partially the energy function. There are two types of Active Net are
radial shape and square shape.

3.1 Framework

The position of Active Net is represented by the positions of its nodes. We can
represent the nodes parametrically as

where 0<p<l , 0<g<l . Each node connects with four neighboring points:

,q),v(p,q + l), (6)

where k = -4- , / — -A- , and Nv is the number of node points along the
p parameter and Nq is the number of node points along the q parameter. In a
similar manner to the Snakes[7] approach, we can express the energy function of
the Active Net as

,t= I f (Eint
Jo Jo

(7)

where /?,„( represents the internal strain energy of the Active Net and Ei,nage

represents the image energy which attracts the Active Net towards the image
features.

As an extension of the Snakes approach, the internal constraint energy of the
Active Net can be written as

Eint = (a(\vp\
2 + \vg\

2) +j3(\Vpp\
2 + \vpqf + \vgqf))/2

v - -&- ( '
UP1 — dpdq

where a and j3 are constants to control the relative importance of the two
terms in Eint- The first-order term |DP |2 + |u,|2, as shown in Figure 4, represents
the force that contracts the Active Net in size and the second-order term |i'pP|~ +
|i';.^r + K'^| , as shown in Figure 5, represents the force that minimizes the change
of gradient between a node and its neighboring node.

3.2 Image Energy

In order to apply Active Net to region extraction, an energy function is required
to attract the network to a target region in an image. For example, we can use
image intensity as the simplest image energy function as follows:

Eimage = wl(x,y) (9)
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Figure 4: The first-order term.

v(p,qll)
Figure 5: The second-order term.
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where w represents a coefficient and I(x,y) represents the intensity of a point
{x,y) in the image. According to the sign of w, the network will be attracted
either to a bright or dark region. When w is negative, the network is attracted to
a bright region and when w is positive, it is attracted toward a dark one.

3.3 Segmentation

By using energy minimization, it is possible to wrap the target region within the
network, as shown in Figure 6. To enable the nodes on the perimeter of the Active
Net to snap to the edge of a target region, we give a boundary condition to the
coefficient w in equation 9. When the Active Net precisely wraps to the target
region, the energy function is minimum.

In Figure 6, the initial network which has a radial shape deforms its shape
toward the target region. Eventually, the Active Net wraps around the target
region and fits itself perfectly to the concave part of the object. Its energy func-
tion consists of the internal strain energy of the network and the image energy
which attracts the network to features of a target region. We have managed to
successfully apply the Active Net to the extraction of a textured region [9].

3.4 Stereo Matching

Computational stereo is a method for recovering information concerning the three-
dimensional shapes of objects by comparing two images of a scene from different
perspectives. Once two stereo images are brought into point-to-point correspon-
dence, we can obtain range values by trigonometric means. Another advantage
of computational stereo is that the method is passive. In recent years, many au-
thors have been interested in the use of energy minimization approaches for image
processing [1] and recently this approach has been applied to stereo matching [7, 8].

For stereo matching, we used the square type Active Net. A pair of networks
is spread on both right and left stereo images. The networks deform their shapes
flexibly so as to minimize the energy function until node-to-node stereo correspon-
dence is completed, and the optimal distribution is obtained. A pair of networks
is spread on the right and left stereo images. Each network has its own energy
function which consists of the image energy to evaluate the correspondence of the
right and left image and the internal strain energy. Since we need no force to con-
tract the Active Net in size in the case of stereo application, the internal constraint
energy of the Active Net can be written as follows.

Eint=/3(\vpp\
2+\vpq\

2 + \vqq\
2)/2 (10)

This constraint effectively forms a disparity smoothness constraint which is of-
ten employed in stereo matching. The stereo matching by Active Net is completed
when a corresponding pair of nodes of the right and left networks represents a
corresponding pair of points in the right and left images. Assuming that the cor-
responding points in right and left images have the same gray level, we can define
the image energy function as follows.

Eimage = w\IR(u(p,q)) - lL(v(P,q))\2 (11)
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Figure 6: Radial Active Net applied to a test pattern.
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where Ift(u(p, q)) represents the gray level at the location of the right-network
node point u(p,q) and Ii(v(p, q)) represents the gray level at the location of the
left-network node point v(p,q); ID is a weight coefficient. The energy function to
be minimized in the stereo Active Net is as follows.

[Ket= f [
Jo Jo

(12)
We wish to obtain a solution to the energy function of equation 12. Two energy

functions for right and left images can be defined as follows.

RKet= I I (Eint(u(p,q))+Eimage(u(p,q)))dpdq
Jo Jo

=So /o (PiKrf + Kel2 + K / ) / 2 + «>I'K(U(P,«)) " lL(v(p,q))\2)dpdq(U)

LE*let= / {Eint(v(p,q)) + Eimage(v(p,q)))dpdq
Jo Jo

=Io /o WlVppf + M 2 + \viq\
2)/2 + w\IR(u(p,q)) - IL(v(p,q))\2)dpdq(U)

3.5 Experimental Results
We have applied our method to real and random dots stereo images. Our simulta-
neous equations were often trapped in local minima because of the local roughness
of the image. To avoid this problem, we introduced a scale-space strategy [10]
which sets a coarse surface at initial situation, and avoids getting caught in a local
minimum, and then to change the surface fine. We employed three stage mini-
mization from coarse to fine which were made by three different sizes of Gaussian
filters (r = 3.0,5.0,9.0). We applied the energy minimization to the rough image
and converged on a network. Next, we used this result as input of the succeeding
minimization process with a fine image. We repeated this process three times so
as to converge near the optimum. In Figure7, bottom shape shows the result of
stereo matching by Active Net applied to top images.

3.6 Unknown epipolar

In the case of these stereo pairs, epipolar lines are parallel to the x axis (horizontal
axis) so that equation 12 is not used to move the nodes in the y- direction. The
calculated disparity distribution is shown by a gray scale image in which bright-
ness is proportional to disparity. The geometry of the imaging system is usually
unknown; thus we can not employ the epipolar constraint and we have to include
equation 12 which allows the nodes of the networks to move in both the x and y
directions. Results for artificial random pattern stereo pairs are shown in Figure
8. There is a vertical displacement of the inner rectangular area in Figure 8, even
though we can still reconstruct the original shape.



28

Figure 7: Stereo matching applied to real stereo pair(Venous). From top to bot-
tom, the initial net, the converged net (with and without the original stereo im-
ages), bird-view display.
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Figure 8: Stereo matching applied to a random pattern stereo pair. From top to
bottom, stereo pair, initial net, the converged net, bird-view
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4 Shape description of range data
We introduce the "blobby model" for automatically generating a shape description
from range data. This method expresses a surface of an object as an isosurface of
a scalar field which is generated from field generating primitives [11]. To deter-
mine the distribution of primitives, an energy function which measures the shape
difference between the range data and the model is minimized. We start with
a single primitive and introduce more primitives by splitting each primitive into
further primitives so as to reduce the energy value. In this manner, the shape of
the 3D object is slowly recovered as the isosurface produced by many primitives.
We have successfully applied this method to range data of some human faces.

5 Conclusion
These approaches are fit for early and intermediate vision. There is an open
problem to combine top down information and the bottom up information. We
are currently trying to introduce an attention method to solve this problem [5].
Another current research involves combining Genetic Algorithm and Active Net
for stereo matching. It involves using the Active Nets found using the previous
method as individuals for the Genetic Algorithm. Those methods consume a lot of
computation time on ordinary computers but are suitable for parallel implemen-
tation.
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