
Attentive Visual Tracking

J. Roberts and D. Charnley
Advanced Systems Research Group

Dept. of Aeronautics and Astronautics
University of Southampton

Highfield, Southampton, S09 5NH, U.K.

Abstract

The research reported here addresses the problem of detecting and track-
ing independently moving objects from a moving observer in real time, us-
ing corners as object tokens. Local image-plane constraints are employed
to solve the correspondence problem removing the need for a 3D motion
model. The approach relaxes the restriciive static-world assumption con-
ventionally made, and is therefore capable of tracking independently moving
and deformable objects. The technique is rovel in that feature detection and
tracking is restricted to areas likely to contain meaningful image structure.
Feature instantiation regions are defined bom a combination of odometry
information and a limited knowledge of the operating scenario. The algo-
rithms developed have been tested on real image sequences taken from typ-
ical driving scenarios. Preliminary experiments on a parallel (Transputer)
architecture indicate that real-time operation is achievable.

1 Introduction
Feature detection and tracking are fundamental to visual sensing in tasks such as
establishing scene content and image data structure for vehicle navigation, local-
isation and map building. Most algorithms for visual tracking assume that the
sensor (camera) is mounted on a moving platform operating in a static environ-
ment, to instantiate and maintain feature trajectories. This restrictive assumption
may be acceptable for well-defined situations such as indoor environments, but is
less useful for unstructured outdoor scenarios which may well contain multiple
independently moving objects (e.g. other v< hides). The research reported here
develops a strategy for the tracking of features which relaxes this constraint, al-
lowing for situations where both the sensor and the environment are moving.

In vehicular applications, the source image signal contains far more data than
can be analysed by a practical vision system in real time, and information of
importance tends to be grouped in space as objects of interest. Most data available
in the image signal is irrelevant to a vision task and it is important,therefore, to
focus analysis on the critical regions and evonts, and ignore the majority of the
signal that is not relevant [8].

The digtinction between information containing regions and the rest of the
visual field is solely in how the information from those regions is processed, if it is
to be processed at all1. The potential reduction in the amount of data to be

1This selection of region-of-interest(s) is referred to as covert attention[S]
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processed can lead to significant gains in performance. The tracking algorithm
developed here employs just such a strategy, by using knowledge of visual sensor
motion to constrain the search region for new features entering the field-of-view
and local image-plane constraints for existing tracked features. Shapiro et al.[6] use
a similar strategy, but perform feature detection over the entire image plane. The
algorithm described here is novel in that global feature detection is abandoned
and only performed in the relevant regions-rf-interest. The system is therefore
data-driven at a very low-level.

Conventional full image correspondence a id structure-from-motion algorithms
were not developed with parallelism specifically in mind[4, 10]. Consequently their
performance is limited when implemented in parallel [9]. New algorithms (reliant
only on 2-dimensional information), more amenable to effective parallelisation, are
presented here.

2 The tracker

2.1 Region-of-interest tracking
In order to visually track objects in the real world, meaningful features - those
generated by 3-dimensional object/scene stn ictures - must be extracted from an
image sequence. Corners, unlike edges, are discrete in 2 dimensions in the image
plane allowing unambiguous motion estimate:;; they are often more abundant than
straight edges in the natural world making them ideal features to track in an
outdoor environment. We have therefore chosen to track corners, with detection
achieved using an existing corner detection algorithm [3].

A new approach is adopted here in using c ata-driven, local (rather than global)
feature detection[6, 7], where corner detectioi is performed over the entire image
plane; we only perform the comer detection i i the areas of the image-plane where
we expect to find corners. This has been shown to reduce computational overheads
by a factor of 5 typi cally when processing out< loor image sequences (approximately
500 corners) as only a l/5th of the image-phne is being processed.

2.1.1 Tracking philosophy

One of the vital problems in motion analys s is how to match a set of features
over an entire image sequence. This problm is known as the correspondence
problem, and is solved here by assigning an individual "tracker" to each corner.
Trackers subsequently search for their corner:; in a small region-of-interest around
the corner's next predicted position. This strategy is similar to the one used by
Shapiro[6] except that we only perform corner detection within the searched region-
of-interest. This use of individual, independent trackers means feature tracking
may readily be performed in parallel.

Assume that a corner has been detected ct time t, and is located at a position
r(t), where r(t) = (x(t), y(t))- With only a single observation we have no notion of
the corner's image-plane velocity (f (t)) and h mce have no idea where to search for
it in the next frame. If we therefore assume that features do not move "too far"
between successive frames (a reasonable as: umption for video rate processing)
we may place a ngion-of-interest (ROI) in frame t -f- 1 around its image-plane
position found in frame t. Corner detection s then performed within this region
to produce a list (.•'. candidate corners. A sehction process (matcher, see Section
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2.1.2) is therefore required to resolve any conflicts and match the correct candidate
corner to the tracker's corner (Figure l(a)).

Assuming thai a successful match is m.ide between frames t and t + 1, it
is possible to predict the corner's image-plar e position in frame t + 2. A simple
constant image-plane velocity predictor, rath«c than the model-based Kalman filter
often used, proved sufficient for the video-rat; sequences considered (Equation 1).
The size of the search region may now be reduced since we have more confidence
in the corner's likely position (see Figure l(b)).

r(t + 1) = 2r(t) - r(t - 1)

Search Region—:

Potentials

Search Region-

Potential Matches.

Key: m Frame 1 • frame M
• frame t*2

Figure 1: Position of (a) initial search regisn and
(b) subsequent search region.

2.1.2 The match'.r

Figure 2: Match vectors

The matcher uses the image-plane attributes: of each feature-point, generated at
the time of feature extraction, in an attempt to avoid the relatively expensive
template matching techniques[6]. The pixel intensity and image x and y-gradients
are used as components of the attribute vector (Figure 2). A match confidence
value m(v, w) may then be calculated by comparing the normalised magnitude of
the difference vectors between each candidate corner vector (w) and the tracker's
current corner vector (v):

m(v,w) = —= (2)

The candidate corner which has the minimum value of m(v,w), as long as
it is below a predefined threshold, is then c.eclared the best candidate with its
attributes and image-plane position being transferred to the tracker.

2.2 Corner instantiation

While significantly increasing the efficiency cf the feature extraction process, the
region-of-interest strategy introduces the pro Diem of how to find new scene struc-
ture entering the field-of-view. This problem of finding new structure does not
occur in "global" algorithms (e.g. the DROII) system[7]) relying on global feature
detection because those features remaining unmatched are instantiated as new
structure. In contrast we search for new feat ires only in areas of the image-plane
likely to give rise to new information. Dynanic feature instantiation regions are
defined from a combination of odometry inft rmation and a limited knowledge of
the operating scenario.
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2.2.1 Features from trackers

Areas of the image-plane likely to contain lew or previously undetected scene
structure are those areas near features currently being tracked. Hence, any un-
matched candidate corners remaining in the tracker's region-of-interest (Section
2.1) that are also stronger corners than the or e selected for the match are assigned
to newly instantiated trackers for tracking in subsequent frames. This allows new
corners to be generated on objects of interest as they resolve in the image. It
is also possible to associate features, and hence split tracks simply by retaining
information regarding the source tracker of t newly instantiated tracker[l]. The
reverse problem of structures merging is disc issed Section 3.1.

2.2.2 Focus-of-expansion

Consider for example a driving scenario, in which an observer translates forwards.
Stationary (or distant) objects in the environment appear to move along paths
radiating from the focus-of-expansion (FOE) New image structure is likely to be
observed around the FOE making it a gooc region in which to instantiate new
corners.

In this scenario, the real world positions :>f image data located near the FOE
in the image plane are typically hundreds of metres away from the camera. This
results in any features, such as corners, being difficult to resolve, due to the low
resolution. This low resolution is simply caused by the uniform quantisation of the
image, into pixels, which results in the loss of detail of distant objects. The result
of this low resolution is that the area of the mage-plane immediately around the
FOE does not contain much useful, or reliab'e corner information.

In the driving scenario corners must be instantiated on objects (independently
moving objects, or the static world) that are no nearer the observer vehicle than
a certain safe distance. This safe distance, ar minimum detection distance, Dx,
would be based on the stopping distance of the observer vehicle, which in turn is
a function of the vehicle's velocity, VobseTver. If we assume that the observer is
moving on a planar road surface, and is traveling down a tunnel of rectangular
cross-section[2], with the FOE at the tunnels vanishing-point, then we may define
an outer FOE window at a distance D\ in th j real world. As the observer vehicle
moves into the scene, down the imaginary tunnel (see Figure 3), all new image
data contained within the imaginary tunnel in the static world will flow out of this
outer FOE window.

Since we have defined a minimum distal xe
by which time we wish to have instantiated n ;w
corners from the static world, we do not need to
search for new coiners that are located further
away from the observer than £>i. In other wor Is,
if we could sampk at a high enough rate, and
ensure that corners only moved a maximum c f a
pixel between succfssive frames, corner instarti-
ation could be restiicted to the pixels that m<,ke
up the outer FOE window frame (i.e. a frane
1 pixel thick). However, this is not the case. If
we know at what velocity the observer is mov:ng
and we specify how many times, we wish to h< ve
seen a feature by the time it reaches a distai ce
D\ (say n times), we may calculate how far a

Camera View

Figure 3: Position of FOE win-
dows in the image-plane.
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feature in the stalic world will move in n frames in the image plane. It is then
possible to define an inner FOE window (set Figures 3 and 4(b)), at a distance
£>2 in the real world.

D2=D1+ (At is th; time between frames) (3)
Feature instantiation is then performed in the region between these two FOE

windows. As mentioned above, the immediite area around the FOE itself does
not contain reliable corner information due the effective low resolution of distant
objects. The fact that we do not need to search for corners to instantiate within
the inner FOE window overcomes the low resolution problem, assuming that the
inner FOE window totally encloses the low resolution region.

Optical * " •« ' •

(b)

Figure 4: (a) Axis system (b) position :>f FOE windows in real world.

Referring to Figure 4(a), the 3D point P = (Xp,Yp,Zp) in the real world
projects to p in th<; image-plane, where p is given by

= s e lsor focal l e n s t h ) (4)

If a is the camera look-down angle, Hoi,s the height of the camera above the
ground plane (assumed flat), and WT and HT the width and height of the driveable
tunnel respectively, then the position of the FOE windows in the image-plane is
given by Equations 5 and 6.

WT
Bright —

VfT

ytop — f-
D

ybottom — J —: ^~

(5)

(6)

where D = D\ or D2 depending on the FOE window, and a is small.

2.2.3 Image borders

The FOE ROI takes care of new image data entering the field-of-view as a result
of forward translations of the camera. However there are many situations where
image data will enter the field-of-view from regions other than the FOE. In the
driving scenario an obvious source of new mage data is at the vertical edges
of the image-piano, where we would first expect to see any over-taking vehicles
for example. Pla:ing instantiation regions at the left and right-hand sides of
the image-plane therefore ensures acquisition of any features due to over-taking
vehicles.
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(a) (b)

Figure 5: (a) An over-taking vehicle, (b) geometry and axis system.

The width of the border ROI is determinec by the maximum distance we expect
a new feature entering the field-of-view to move in a single frame time. If d\ is
the distance of the vehicle feature from the observer at time f, then the distance
of the vehicle feature from the observer at time t + At, d2 is given by

d2 - di + At(VvehicU - Voh)erver) (7)

where VvehicU is the maximum expected velocity of an over-taking vehicle in the
z-direction. If we assume that a is small, then the width of the border ROI, wtordcr
is given by

(8)= fW,m< [-T--T

If/? is the camera neld-of-view in the x-aiis (Figure 4(a)), then an over-taking
vehicle feature just entering the field-of-view will be a distance d\ away from the
observer, where dj is given by

Wane

tan (f)
(assuming a is snail) (9)

It must be noted that analogous results fi >r FOE/border regions can of course
be developed for large look down angles, a. The equations given here are for
illustration only.

In practice, the border regions are moved away from the image-plane edges
slightly. This is done because image data antering the field-of-view with high
relative velocities tend to be blurred (due to low camera shutter speeds). The
simplest way of recalculating the border's pesition is to use the camera's portion
of the field-of-view that is non-blurred, /?', and use the equations above. Note that
/?' is solely a function of the camera's shutte c speed and the expected maximum
relative velocity observed.

It must also be noted that any observer yawing motion will also cause new
static scene structure to enter the image-pli.ne from the sides. Hence, dynamic
yaw border regions may be developed in a similar fashion. The positions of the
FOE regions will idso change due to observer yaw motion.

2.3 Instantiation and Tracking in real image sequences
The feature generation and tracking algoritlms were implemented and tested in
sequential form on a Sun workstation. Figure 6 shows the corner trajectories
produced by a fo:us-of-expansion ROI afte1 85 frames of the village sequence
(approximately 4 seconds). The camera was mounted on a vehicle, and was driven
along a road at approximately 20kmh~1.
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Figure 6: Frame 85 of the village se-
quence, FOE ROI only.

Figure 7: Frame 27 of the motorway se-
quence, Border ROI only.

Image data1 w<re initially smoothed usirg a Gaussian filter (a — 0.5). Dark
lines represent the past positions (last 5 frarr es) in the image plane of the corners
- the trajectories] small white boxes show each corner's current position. The FOE
ROI is also indicated. Only corners that have been tracked consistently for the pre-
vious 5 frames or more are shown; corners that have been tracked less consistently
were considered, as yet, unreliable and are not displayed. It can be seen from the
figure that the FOE ROI alone produces a good spread of trajectory information
across the image-plane, as would be expected when translating forwards into the
scene. It may be noticed that a number of coiners are found within the inner FOE
region. These are produced as a consequence of tracker ROIs instantiating new
features, some of which may occasionally occur inside the inner FOE region.

A border ROI lias been used on a moton >ay sequence in order to pick-up any
vehicles entering the field-of-view. Figure 7 ;;hows frame 27 of the sequence, and
for clarity, only corner trajectories produced by the border ROI are shown. The
border ROI has clearly detected the over-taking vehicle.

These results illustrate that constrained iata-driven feature instantiation de-
veloped here can adequately produce sufficient feature trajectory information for
extraction of both the static background and independently moving objects.

3 Parallel implementation
Real time visual tracking demands high com mtational effort. Feature generation
and tracking, as considered here, has been d;signed with parallelisation in mind.
A parallel model in described which exploits the natural parallelism inherent in
these particular algorithms.

In the proposed tracking algorithm, each corner is tracked independently, mak-
ing processor farming a natural choice of architecture since it is suitable for situa-
tions in which the processing problem may be broken up into multiple independent
tasks. When work starvation c.in be avoided, processor farming is inherently load
balanced.

1Image sequences Msed are from the PANORAMA ESPRIT project.
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3.1 System architecture
There are four different processor types in the architecture; the Corner Store,
Controller, Image Store, and Tracking Engines (see Figure 8).

Processor Fmrm

Tracking Engines \

Figure 8: Overall system model.

• Corner store. The corner store's main function is to store the current and
past positions of the corner features (i.e. it maintains feature trajectories). The
corner store remains idle until a request is received from the controller processor
for a corner to be tracked. The attributes, and predicted image-plane position of
the corner are then immediately sent to the controller processor.

It is also the corner store's task to detect the presence of duplicated trackers.
Because trackers are completely independent of one another and of instantiation
regions, it is possible that some features will be tracked by multiple trackers si-
multaneously. As results (the updated position of the features) come in via the
controller, a note is made in the blackboard cf the feature's ID and its position in
the image-plane. When there is more than one feature at a single image-plane lo-
cation, a decision is made and the appropriate trackers are terminated leaving the
single most reliable tracker to continue. This decision is based on the similarity of
the features' trajectories over the subsequent two frames. In this architecture, the
corner store is located on the root processor making user access to the corner store
relatively simple. It is also intended that oth;r processors performing higher-level
tasks will be attached directly to the corner ;;tore.

• Controller. The controller is the hear; of the system controlling the flow of
data from the corner store to the tracking engines, via the image stores. Control is
achieved with the aid of two buffers, the free worker buffer, which contains a list of
tracking engines currently awaiting work, and the work buffer, which contains the
work for the tracking engines, corner data to be tracked (i.e. corner attributes,
image-plane position, etc). The controller also acts as a result router between
processor farm and the corner store. Any results received by the controller from
the processor farm are immediately forwarded to the corner store, with the source
of the result, the ID of the tracking engine from which the result originated, being
noted as an entry into the free worker buffer (a result implies that that tracking
engine must be free). New work may then be sent from the work buffer, via the
image stores, to a tree tracking engine.

• Image store. The image store coi tains the actual image and can be
thought of as a simple filter. As corner data passes through the image store, the
required image patch is extracted from the image, re-packaged with corner data
and sent on to the tracking engine processor farm. Like the controller, the image
store routes results back from the tracking engines. It may be noted that the
image store may consist of a number of individual processors, with the image data
distributed among them. This allows simultaneous access to different areas of the
image-plane.

• Tracking engines. The tracking erjgines perform the actual corner de-
tection and matching. In addition, they must also route corner data destined for
other tracking engines in the processor farm and pass results back to the corner
store via the image store and controller.
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3.2 Performance
Corner Store

MAXTRAN Interlace

Image store
Controller

Image store

Tracking Engines

Transputer architec-

The architecture described in the previous sec-
tion was implemented and tested on 30 TiOQ
Transputers (20MHz processors, 10MHz links).
Four image store processors were used leaving
24 tracking engines. The four image stores wore
configured as a ring with individual tracking
engine processor farms attached to each image
store processor (Figure 9). Performance testing
involved tracking a number of corners between
two consecutive frames of an image sequence.
The performance measure used was simply (he
time taken to track 64 corners. The distribution
of image plane data among the image store pro-
cessors means that the performance of the archi-
tecture is, to a limited extent, data-dependent;
performance is a function of corner position in
the image-plane. This is due to the way that
data flows around the ring. Architecture performance may be improved (opti-
mized) by targeting corners to the optimum image store based on the corner's x, y
image plane position.

A comparison of the non-optimized and optimized performance is shown in
Figure 10, where 64 corners were tracked. A performance of HHz was achieved
tracking 64 corners using 24 workers. Note that speedup is defined as the time
taken for n tracking engines/workers to track 64 corners divided by the time taken
by a single worker (with a single image store) to track the same number of corners.
It is clear from Figure 10 that near-linear speedups are achieved. The targeting of
corners to image stores is also seen to have i positive effect when the number of
tracking engines is greater than 20.

The performance profile shows
irregularities caused by the ini-
tial condition of the network (i.e.
all workers free). This results in
many workers finishing their work
at about the same: time, causing a
number of workers to be free simul-
taneously. This effect is seen to
subside with time The architec-
ture and its performance are dis-
cussed in greater detail in [5].

Speed p Frame Rate (Hz)

1 5 6 7 8 9 10 11 12 13 14 IS 16 17 18 19 20 21 22 23 24

Number of Workers

Figure 3 0: A comparison of non-optimized
and optimized architecture performance.

4 Conclusions

An algorithm has been developed for the detection of independently moving and/or
deformable objects, in a static world from a noving observer. The algorithm pre-
sented is based on the concept of independent local trackers, using corner features
as primitives. The technique is novel in thrt unlike traditional feature tracking
algorithms, where feature instantiation is cairied out over the entire image plane,
here it is restricted to those areas, regions-of-interest (ROIs), most likely to con-
tain new image data. It was found that two distinct types of instantiation ROIs
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were required for a typical driving scenario. The first type of ROI is the focus-
of-expansion (FOE) ROI. This region instantiates new features brought into the
image-plane as a result of forward translations of the camera, its size being de-
termined by the observer's velocity. The second type of instantiation ROI is the
border ROI. Border ROIs are required to instantiate new features entering the
field-of-view laterally from for example, over-taking vehicles.

Independent feature tracking lends itself naturally to parallelisation. A par-
allel architecture was implemented to evaluate the performance potential which
suggests that near-real time feature tracking is possible using this algorithm.

The work may be summarized as follows:
• A novel feature detection and tracking strategy has been developed where

feature detection is only performed in areas of the image plane containing
useful information.

• Static world and independently moving objects can be detected and tracked.
• Parallel implementation of the algorithm has shown that near-real time op-

eration is possible and that full video rate (25Hz) performance is achievable.
The next task is to to use trajectory information for obstacle collision avoid-

ance. This will involve the modeling and segmentation of the observed feature
trajectories into distinct objects.
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