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Abstract

In the absence of a priori information on scales of interest vision systems should
initially process in a scale invariant manner. The fact that any signal can only be
sampled discretely further constrains the initial processing. The paper argues that a
representation satisfying these requirements is an hierarchical segmentation of scale-
space. An algorithm is presented to compute such representations. The algorithm has
been designed so that its operation is scale invariant in the following sense: the
addition of finer scale information only ever adds to the computed representation
and never changes what was discoverable from coarser scales. It is noted that such
a scheme has benefits even when the scales of interest are known.

1 Introduction

A theory of image segmentation must address three questions: the nature of the
input (section 1.1); the nature of the output of the process (section 1.2); and the
method whereby the inputs are processed to produce the output (section 1.3).

1.1 Scale-Space and Image Measurement A unified theory of image measurement
has been developed by Koenderink [1988 and 1992]. For the visual system to
exhibit scale, shift and rotational invariance its measurements must take the form
of derivatives of an aperture function. The aperture function ranges in size from
the inner scale (pixels) to the outer scale (whole image). The condition that no
detail should be generated as scale is increased dictates that the aperture function
should be the isotropic Gaussian kernel. These measurements can be organized
into a scale-space which can be visualized as a stack of images formed into a
volume. Each horizontal slice of the scale-space is the original image blurred to
the degree associated with the aperture function at that level.

1.2 Image Segmentation Outputs of most previous segmentation algorithms fall
into the following categories -
o Division of the image plane by a series of closed loops [e.g. Marr and

Hildreth 1980].
o A set of not necessarily connected edge fragments [e.g. Canny 1986].
© A partition of the image plane [e.g. Leclerc 1989].
None of the above representations are rich enough to express the relation of
object/sub-object. Previously we have presented an algorithm for constructing
hierarchical segmentations (HS) of grey-level images [Griffin et al. 1992b]. An
improved version of this algorithm is described in section 2. An HS represents
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image structure as a recursive partitioning of the image. However, even this
representation is not rich enough to be scale-invariant. If objects changed their
shape but maintained their topology over scale then an HS (of the image plane)
would be sufficiently rich for scale-invariance. All that would have to be ensured
would be that structure at the bottom of the hierarchy was the first to disappear
as the observer receded from the scene. As it is, objects do change their topology
during blurring. Consider a lightly leafed tree. At close range the tree is seen to
be a complex connected mesh of leaves and branches. As the viewpoint moves
away (equivalent to blurring the image), at some point, thin twigs attaching leaves
to branches will no longer be resolvable and the leaves will appear to be floating
in mid-air (the leaf objects are now disconnected). As the viewpoint moves still
further the leaves re-merge and one is left with a tree-shaped connected blob. An
important aspect of this phenomenon is that changes in topology under blurring
are not accompanied by significant perceptual changes [Koenderink 1986].

Figure 1 - Examples of changes in topology over scale.

Fig. 1 shows examples of the richness of this process. Various shapes and their
outlines under blurring are shown. The outlines have been organized into surfaces
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(enclosing 'shape-volumes') showing the structure of the shape in scale-space.
The vertical direction is scale, and horizontal cross-sections are the shape at
particular scales. The shapes show examples of merging (M), splitting (S) and
various combinations of the two.

The dynamic shape theory of Koenderink [1986] shows how these shape volumes
are to be defined for binary images. The algorithm presented in section 2 is a
solution to the more general problem of grey-level images.

1.3 Edge Measures Edge measures which attempt to detect intensity
discontinuities (as compared to, for instance, texture boundaries) are typically
calculated from the response of one or more filters. Most filters [e.g. Canny 1986]
are based on the Gaussian kernel and its derivatives (as advocated by Gaussian
scale-space theory). Often these filters are applied at several scales and the results
combined to emphasize those edges which exist over a range of scales. In section
2.2 the concept of stability over scale is examined within the framework of
Gaussian scale-space theory and a novel edge measure is presented.

2 Single-Scale Hierarchical Segmentation

In our single-scale HS algorithm the image is represented as a graph, where,
initially, nodes correspond to pixels and the links between nodes represent edges
and correspond to pixel adjacencies (i.e. the cracks between pixels). The
procedure iteratively groups nodes to form regions separated by edges. The
clustering algorithm is detailed in section 2.1. In section 2.2 we derive a measure
for the stability of edges over scale. This measure is used to modify the gradient
to produce an edge strength which combines strength and stability.

2.1 Graph Merging The input image is represented as an undirected graph where
the nodes represent image objects and the links the object adjacencies. Initially
there is a node for each pixel in the original image and a link for each pair of
adjacent pixels (4-way connectivity used). The graph is iteratively reduced by
merging sets of adjacent nodes until only a single node remains. As the graph is
reduced, node/sub-node relationships are recorded. Thus every object (apart from
individual pixels) has a set of sub-objects and every node (apart from the whole
image) has a parent object of which it is a sub-part. As the hierarchy is formed
descriptive values (attributes) are accumulated within the nodes. These attributes
are used in the calculation of an edge measure which guides the node-merging.

To select which nodes to merge, an edge measure (see section 2.2) is calculated
for each link in the graph. The edge measure must satisfy two criteria: firstly, that
it is high if the two nodes are 'dissimilar' and low if 'similar' (similar and
dissimilar being defined by the particular edge measure used); and secondly that
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it is calculated solely from consideration of the two nodes at either end of it. We
require the merging technique to be independent of the edge measure used and
invariant under linear transformations of the luminance, so we cannot use a
threshold on the edge strength to discover which nodes should be merged. Instead
we group in a similar manner to watershed techniques [Griffin et al. 1992a]. A
pointer is set across the weakest edge of each object (i.e. towards the object with
which it wants to merge first). This set of pointers groups the nodes into
equivalence classes. Exactly one equivalence class is formed for each minimally
weak edge. These occur where two objects mutually point at each other.
Separating the equivalence classes is a network of ridges of high edge strength.
Repeated application of this procedure produces a hierarchy, but not a very
satisfactory one: there is a problem of 'interference' between regions with a
different number of levels of structure.

The problem can be understood my means of an example. Consider an image
with two neighbouring regions of different mean luminance. Imagine one region
to be smooth (for instance the background) and the other textured. If we proceed
as described, then the smooth region will quickly cluster together in only a few
iterations, while the textured region may still be quite fragmented. At the next
iteration the smooth region will merge with a portion of the textured region. The
end result is that the hierarchy will not have an object corresponding to the entire
textured region. The problem occurs in those equivalence classes that have an
internal edge stronger than some external edge. The remedy is simple. The
weakest external edge of each equivalence class is determined. Internal edges
which are stronger than the weakest external edge of the equivalence class are
noted and objects are removed so that offending internal edges become external.
Of the two objects that could be removed the one with the stronger weakest edge
is chosen. The value of the weakest external edge of an equivalence may change
during this process; it may become stronger but never weaker, so the order of the
removals is irrelevant. No equivalence class will be completely destroyed, as
neither of the minimally-linked pair at the centre will ever be deleted. The
equivalence classes are then merged and a new graph is formed from the resulting
nodes and those nodes not taking part in any merge. The graph will always
contain at least one minimally weak edge so the graph is reduced at each iteration
and the procedure only halts once a single node (corresponding to the entire
image) is all that remains.

The resulting hierarchical structure of nodes and child nodes (objects and
sub-objects) descends all the way from the outer scale (the entire image) down
to the inner scale (individual pixels). Since the hierarchy is of variable depth,
different parts of the image will have a different number of levels of structure.

2.2 Edge Measure It has been noted that the occurrence of an edge at multiple
scales contributes to its perceptual significance [Marr and Hildreth 1980]. Bischoff
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and Caelli [1988] attempted to make this precise by defining the stability of an
edge (in their case Laplacian zero-crossings) as the largest continuous range of
scales over which the zero-crossing lies within some neighbourhood of the point.
The area of the neighbourhood increases linearly with scale.

It can be shown [Koenderink 1988] that the paths of steepest ascent on the
isophote surfaces of scale-space are given by (L is the luminance) -

s= ( -LXLO ,~LyLo ,L*+Ly) T (x,y,a) system

This is conveniently expressed in the (w,v,t) gauge co-ordinate system [Haar
Romeny et al. 1991]. The w-direction is in the direction of the gradient, the
v-direction is tangent to the isophote through the point and t=2aw (the natural unit
of length in scale space [Koenderink 1992]).

a = (-y/O~Lg , 0 ,LW) T (w.v.t) system

Assuming that we are willing to identify an edge through scale by means of these
isophote projections we can use this expression to calculate the angle (0) between
the tangent to the isophote projection and the a=constant plane

6 = a r c t a n ( L w / \^/6~Lo |)

This shall be referred to as the phase with respect to scale and shall be used to
characterize the stability of an edge point. We note that unlike previous
definitions this value is defined for all points of the image and not just for
Laplacian zero-crossings.

We combine this angle with the gradient magnitude to produce an edge measure
E (referred to as the modified gradient) which reflects both the strength of the
edge (as given by the gradient magnitude) and its stability (as given by the phase

with respect to scale). In scale-space we have the property that Lo =V2L

which allows this value to be calculated from derivatives within the image plane -

E=LW.arctan (Lw/

Figure 2 shows: a ID blurred step edge; its gradient; and the modified gradient.
This shows how the non-linearity of the modified gradient has produced a cusp
at the point of maximum response (for a step edge) rather than a simple
maximum.
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2.3 Single-Scale Image Measurement For the edge measure detailed in section 2.2
three attributes are required: mean luminance, mean Laplacian and area. The area
attribute is needed for the recalculation of the luminance and Laplacian attributes
after node merging. The initial nodes in the graph correspond to individual pixels
and so have an area of 1 and a luminance inherited from the pixel. The Laplacian
is calculated with the 9-point mask described in [Lindeberg 1990].

To calculate the strength of an edge between two regions we require values for
the gradient and the Laplacian. We use the difference in mean luminance
(between the two regions) and the average of the mean Laplacians (of the two
regions) for these two values.

3 Multi-Scale Hierarchical Segmentation

In section 1.1 it was pointed out that since the topology of image objects can
change over scale, a hierarchical segmentation of the image plane is not
sufficiently rich to capture image structure in a scale-invariant manner. A
representation which is capable of scale invariance is a hierarchical segmentation
of scale-space. In such a representation, objects are connected volumes of scale-
space. Cross-sections through these volumes give the shape of the object at that
scale. As before, sub-objects are completely contained within their parent.

The establishment of the relations between images at different scales is referred
to as the correspondence problem [Koenderink 1990 p502]. Previous attempts to
solve it [Lifshitz 1987] have concentrated on establishing the isophote projections
of the image points in a consistent manner. This has proved to be hard. One
problem with it is the breakdown of nice causal behaviour at critical points of the
image. Koenderink [1989] has shown that this anomaly does not occur if one
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looks at areas instead of paths. The solution presented in this paper proceeds by
calculating an area-based representation of the image at each scale and
establishing a correspondence between the representations. The representation
used is the hierarchical segmentation described in the previous section. The
correspondence proceeds stepwise. Initially, the second coarsest scale
representation (Rj) is put into correspondence with the coarsest scale
representation (Rj). During this process R2 may be modified. Then R3 is put into
correspondence with the Rj+R2 structure with what ever modification is
necessary, and so on.

The technique of establishing correspondence was motivated by 3 constraints -
Cl The correspondences generated should be consistent with the object/sub-

object relationships already discovered at coarser scales (scale-invariance).
C2 All objects at a given scale should have a cause at the next finest scale

(scale-space causality).
C3 Although the addition of information at a finer scale may reveal that two

apparently distinct objects are in fact connected, no edge at a coarser
scale should be removed by the addition of finer scale information
(scale-invariance).

and two considerations -

C4 As much freedom as possible should be left to the segmentation generated
within the scale (use your data).

C5 Causes should be close to effects (isophote projections).

3.1 Multi-Scale Image Measurements The requirement of scale invariance dictates
that (i) scale should be sampled logarithmically (ii) the number of samples per
unit area, at a given scale, is proportional to that scale. Together this gives scale-
space the shape of an exponentially tapering tower (such as the Eiffel Tower) of
which the quad-tree [Rosenfeld 1984] is an example.

Koenderink [1988] has argued that for 8-bit images a scale sampling ratio of
1.155 (approximately one fifth of an octave) is appropriate. This is a comparable
figure to the results of psychophysical experiments [Caelli et al. 1983] which test
the ability of observers to discriminate between images blurred by a small
amount. A scale-space constructed with this sampling scheme and sampled at the
Nyquist frequency within scale is a factor of 7.43 greater in size than the original
image.

The set of samples so defined lacks a topology. The required topology has a
within- and a between-scale component. Within scale the 4-way connectivity
implicit in the grid-like arrangement of samples is used. The between-scale
topology takes the form of a lattice structure. Each sample is connected to a set
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of samples in the finer scale (potential causes) and a set of samples in the coarser
scale (potential effects). This can be envisaged as a pair of cones pointing
upwards and downwards from each point. The spread of these cones represents
the fastest lateral movement possible by an image feature during blurring. The
angle of the cones is determined by the precision of the image: the higher the
precision the greater the possible lateral movement. These cones are not unlike
the light cones of general relativity in that they represent the limits of causal
linkage.

3.2 Combining Segmentations from Different Scales The scale-space segmentation
is created from coarse to fine. Sequentially, each scale is attached to the bottom
of the growing segmentation until the whole of scale-space from inner- to outer-
scale is represented. In the following we sketch the process whereby a finer scale
is attached.

Constraint Cl guides the determination of cause/effect relationships between the
objects of the finer scale (causes) and the partial scale-space segmentation so far
discovered (effects). The two hierarchy roots are connected as cause (fine) and
effect (coarse) and then the depth 1 sub-objects of each hierarchy are dealt with.
A system of cause/effect relationships is established between these objects (see
next paragraph). Since both merge and split events may occur these cause/effect
relationships are potentially many-to-many. Some causes may be without effects
but all effects will have a cause(s). The cause/effect relations partition the causes
and effects into equivalence classes. The procedure then continues recursively
within each equivalence class and so proceeds down the two hierarchies.

How are the cause/effect relations determined between the two sets of objects?
We consider the set of pixels making up the effect objects. The between-scale
topology of scale-space defines a set of pixels in the finer scale which are
potential causes. (*) For each effect pixel at least one of the attached finer scale
pixels will belong to a cause. Thus there is at least one cause/effect relationship
implied by each effect pixel. We select one relationship for each effect pixel
(guided by C5) and instantiate it. As a consequence of this, when we come to
deal with the sub-causes and sub-effects statement (*) will still hold. This means
that the process will continue all the way down the effect hierarchy and so C2
will be satisfied.

It is however possible (likely) that constraint C3 will be violated. This will occur
if a common cause is found for two adjacent effects. Such events are detected and
dealt with by modifying the finer scale hierarchy. Any offending causes
responsible for a violation of C3 are removed and replaced with their sub-parts
(a pixel object will never cause such a violation, so there is no problem here).
Then the cause/effect relations are re-determined between the effects and the now
changed set of causes. This process of modification continues until cause/effects
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are set up that do not violate C3. This is always possible, but in extreme
situations may mean that the causes are fragmented right down to the pixel level.

The set of cause/effects thus found are consistent with C3 but may imply the
merging of groups of causes. This occurs if they are adjacent and have a common
effect. Such groups are detected and hierarchically clustered. The root of this
clustering is then put into cause/effect relation with the common effect of the
clustered objects. This step undoes many of the initial modifications that were
necessary to ensure that C3 would be satisfied.

4 DISCUSSION AND CONCLUSIONS

We have presented single- and multi-scale hierarchical segmentation algorithms.
The single-scale algorithm generates hierarchical segmentations of the image
plane. The multi-scale algorithm links and modifies hierarchies from a range of
scales into a hierarchical segmentation of scale-space. The process is scale
invariant in the sense that the addition of finer scale information only ever adds
to the representation and never changes what is already there.

The shift from a hierarchical segmentation of the image plane to a hierarchical
segmentation of scale-space allows a richer set of image features to be
represented. The elements of the segmentation are connected volumes of scale-
space. The 'shape volumes' make explicit many features whose detection is
regarded as crucial in shape representation.

o Objects which are not connected at some scale (e.g. the inner scale) can
still be grouped into a single gestalt.

o Objects can be split into sub-parts at narrowings (if a split occurs).
o Spurs/dents can be identified and related, as protruding from or

penetrating into, some more significant pan.

It is this added benefit of also producing a structure suitable for shape processing
that makes the scheme particularly attractive. The insistence of scale-invariance
is thus seen to be worthwhile not only for vision systems with unknown inner-
scale (such as mobile robots) but also for systems where the inner-scale can be
precisely known (such as medical imaging and automated inspection systems).

Several image features cannot be represented by this scheme. Firstly, there are
shadows and transparency, both cases of overlapping objects. This cannot be
expressed in the current scheme. Secondly, there are dot patterns [Robinson et al.
1992]. In dot patterns groups of widely separated points are linked together; this
could not be achieved by their being parts of some common object at a coarse
scale, as the individual dots would disappear at an earlier stage of blurring.
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