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Abstract

In a fraction of a second humans are able to comprehend novel images of
objects and scenes. Indeed, the human represents the only existence proof that
a general shape recognizer is even possible. Geon theory offers an account
of this phenomenon characterized by four general assumptions: a) Objects
are represented as an arrangement of simple convex or singly concave parts
(geons), b) The geons can be distinguished by binary contrasts (differences)
in viewpoint invariant properties, such as straight vs. curved, rather than
metric properties such as degree of curvature, c) The relations among the
geons are explicit, such as PERPENDICULAR-TO or TOP-OF, as part of
a structural description, rather than implicit in a coordinate space, and d)
A relatively small number of geons is sufficient. Recent research evaluating
these assumptions is reviewed.

1 Introduction

Three striking and fundamental characteristics of human object recognition are
its invariance with changes in viewpoint, its ability to operate on unfamiliar ob-
jects, its robustness in the face of occlusion or noise, and its speed, subjective
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ease and automaticity. Geon theory (Biederman, 1987) offers an account of this
extraordinary capacity. In this paper we review the current statement of the the-
ory, its empirical status as an account of human object recognition, and some of
the challenges that remain. First we present a brief discussion of the goals of this
research.

2 What Should be Modeled in a Theory of Hu-
man Shape Recognition?

There is likely no single answer to this question in that humans can activate an
apparently unbounded set of classes for any given object image and achieve this
activation in a variety of ways. For example, if the goal is to distinguish among the
contents of a bin of parts, model-based matching, in which the image is matched
against an exact, metrically specified, object representation (the model) can be
successful (e.g., Lowe, 1987; Ullman, 1989). The major problem is estimating the
pose of the object. No concern need be paid to the extent to which the theory's
performance resembles that of a humar

We have concentrated on modeling primal access (Biederman, 1987): The ini-
tial activation in a human brain of a basic-level representation of an image from
an object exemplar, even a novel one, in the absence of any context that might
reduce the set of possible objects. This commits us to take seriously the data (es-
pecially reaction times) obtained during real-time performance. By concentrating
on basic- (actually entry-) level classification, we account for the kinds of classi-
fication by which humans gain most of their knowledge about their world, that
something is a sofa or an elephant, for example. This basic level refers to the level
of abstraction of visual concepts that maximizes between-category distinctiveness
and within-category informativeness. Specifying the subordinate level class, for
example that something is an African (vs. Indian) elephant or is a particular style
of sofa, provides only a slight increase in informativeness at an enormous loss of
distinctiveness,. That is, the differences among sofas are much smaller (and less
significant) that the difference between a sofa and an elephant! Similarly, the su-
perordinate level, that something might be an animal or an article of furniture,
sacrifices informativeness with only a slight gain, if any, in distinctiveness. By
modeling entry-level rather than basic level, we can treat an exemplar of a class
that differs greatly in shape from others of that class. Thus penguin is considered
a separate entry-level class from the class birds . Entry level terms for an object
are the first to enter a child's vocabulary and are used at least ten times more
frequently than other level terms to refer to the same entity (Biederman, 1987).

3 Geon Theory

Geon theory assumes that objects are represented as an arrangement of simple,
viewpoint-invariant, volumetric primitives, termed geons, such as bricks, cylinders,
wedges, cones, and squashes, and their curved axis counterparts, as illustrated in
figure 1. The arrangement matters, as illustrated with the cup and the bucket. In
the cup, the curved cylinder is connected in (two) END-TO-MIDDLE joins and is
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SIDE-OF the cylinder. In the bucket, the curved cylinder, is ON-TOP-OF and is
connected in (two) END-TO-END joins.

Figure 1: Five geons and five objects. Note that the pail and the bucket are
composed of the same geons but in different relations. TOP-OF is a relation. If
the page is rotated 180 the pail will resemble a cap and the lamp a trowel or shovel.

The viewpoint invariance derives from a classification of the edges correspond-
ing to the orientation and depth discontinuities of the object's surfaces, according
to viewpoint invariant contrasts (VICs). VICs are differences in nonaccidental
properties, i.e., properties of edges that are unaffected (or largely unaffected) by
rotation in depth, such as straight vs. curved, vertices formed at the cotermi-
nation of edges (L, Y, arrow, and tangent Y), and whether edges are parallel or
nonparallel. In the current version of the theory there are 24 geons generated by
these contrasts which serve as a partition of the set of generalized cylinders into
convex or singly concave volumes. Double concavities are taken as candidates for
parsing points by which a complex object is decomposed into its geons.

In a current theoretical effort, we are exploring a redefinition of the geons in
terms of those volumes that minimize viewpoint uncertainty over the aspect graph
(Koenderink & Van Doom, 1979). For example, a cylinder can be identified as
such from almost any viewpoint, except for those cases where it projects as an
ellipse or quadrilateral. If the areas of the viewing sphere corresponding to each
projection of a volume, ignoring aspect ratio and degree of curvature, are converted
to probabilities, say .98 for the cylinder, and .01 for the ellipse, and .01 for the
quadrilateral, then geons have the property of low uncertainty in the Shannon
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sense, i.e., they yield low values for -p(i)log2p(i), where each of the p(i)s refers to
the proportion of the surface of the viewing sphere occupied by each interpretation.
A complex volume or shape would change its interpretation many times over the
viewing sphere and thus have high uncertainty. The lowest uncertainty, zero,
would be for a sphere. Obviously, low viewpoint uncertainty is equivalent to high
viewpoint invariance. Although it is likely that the volumes that would pass the
criterion of low viewpoint uncertainty would largely correspond to the current
set of geons, this redefinition allows a more principled basis for the derivation
of the geons. In particular, low viewpoint uncertainty, by minimizing change as
different views of an objects are encountered, may yield optimal conditions for
a self-organizing neural network to develop hidden units that function as geon
detectors.

3.1 Relation of geon theory to other current models of bio-
logical object recognition.

All models of biological object recognition assume an input layer that can be ap-
proximated by a lattice of filters that cover the visual field. Each node in the
lattice is occupied by a number of simple filters (typically modeled as a Gaussian
damped sinusoid, termed a Gabor filter), each "tuned" to a particular orientation
and spatial frequency at that position in the visual field, though there is consid-
erable overlap in the coverage of the niters at nearby nodes. Each of the Gabor
filters corresponds to a simple cell and each node corresponds to a single hyper-
column in the initial region of the cortex that receives visual inputs (area VI).
There are approximately 2,100 hypercolumns in the VI area of each hemisphere.
At the object layer are units corresponding to the various object categories that
the network is supposed to differentiate.

Most current theories of object recognition can be distinguished along two
dimensions: a) the degree to which they assume intermediate representations be-
tween input and output, and b) whether they assume the representation is defined
in a coordinate space or is a structural description.

Intermediate Representations. A recent review article by Dickinson, Pentland,
and Rosenfeld (1992) provided an excellent account of this dimension of theorizing.
Some theories assume no intermediate representation, mapping the output of the
filters directly onto the object layer, as in the theories of Poggio & Edelman,
1990, and Buhmann, Lange, von der Malsburg, Vorbrggen, &; Wrtz). At the other
extreme, are those theories such as geon theory that assume volumetric primitives.
Between these two extremes, are theories that specify lines (as in Lowe's, 1987,
model) and surfaces, for example. Dickinson et al observed a tradeoff between the
ease at which the representation could be determined from the image and the ease
at which object representations in the data base could be successfully activated.
Thus, filter values are easy to compute but are of very little help in selecting among
objects given that viewing conditions can change. Geons are extremely difficult to
extract but can be quite powerful in accessing object representations.

Coordinate Space. Another important dimension by which theories can be clas-
sified is whether they assume a coordinate space that preserves retinal proximities
for the matching of input against stored representation (as in Poggio & Edelman,
1990) or whether a structural description, consisting of elements (such as parts)
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and explicit relations among these elements, as in Hummel and Biederman (1992).

4 The Psychophysics of Entry Level Classifica-
tion

4.1 Picture Priming Experiments

What are the data that we wish to model? We have recently completed a number of
picture-priming experiments in which subjects name, as quickly and as accurately
as possible, briefly (100-500 msec) presented line drawing of objects. The image
is followed by a mask consisting of a random-appearing arrangement of contours.
The pictures are then shown a second time, several minutes later (in a different
order). There is marked facilitation (or priming) in the speed and accuracy of
naming on this second block of trials. A part of the facilitation is visual (and
not just verbal or conceptual) in that an image of the same basic level class but
of another shape, such as another type of chair, is named more slowly than the
original object.

4.2 Strong Invariance

What happens if the image, on its second presentation, is projected to another
part of the retina (an equal distance from fixation as on its first presentation), or
at another size, or at another orientation in depth than what it was when first
presented, or reflected? Would there be any priming? A weak form of invariance
would be supported if there was some priming, but less than if the object was
at its original position, size, or orientation. Remarkably, the results clearly sup-
ported strong invariance-there was no effect of changing position, size, reflection,
or orientation in depth (up to parts occlusion) (Biederman & Cooper, 1991a,b;
1992; Biederman &; Gerhardstein, 1993). Biederman & Gerhardstein also showed
that depth invariance could readily be achieved with nonsense objects (in a same-
different matching task), indicating that invariance could occur in the absence of
a familiar object model.

On computational grounds, the invariances seem entirely reasonable in that
the alternative, a separate representation of an object for each of its image man-
ifestations, would require a prohibitively large number of representations. The
invariance in recognition speed, i.e., the strong invariance, moreover, is inconsis-
tent with the hypothesis (such as that advanced by Ullman, 1989) that recognition
is achieved through template transformations for translating, scaling, or rotating
an image or template so as to place the two in correspondence, as such transfor-
mations would (presumably) require time for their execution, not to mention the
formidable initial problem of selecting the appropriate transformation to apply to
an unknown image. Transformational models can achieve weak invariance, but
not strong invariance (unless they assume transformations with no time cost).

The phenomenon of strong invariance for position, reflection, size, and ori-
entation in depth, may not be just a psychophysical curiosity but may reflect a
fundamental partitioning in the way in which the brain handles shape. In recent
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years it has become apparent that there are least two extrastriate cortical visual
systems. Both start at the striate cortex (VI), the primary projection area in the
occipital cortex, which receives direct inputs from the retina, by way of the lateral
geniculate body. One system, termed the "where" system, extends dorsally from
VI, to the posterior parietal (PP) cortex, and has been implicated in memory for
location. The other, termed the "what" system, extends ventrally, from VI to V2,
V4, and then to the inferior temporal (IT) cortex and appears to determine object
recognition.

Why should these particular visual systems have evolved separately? A possible
clue lies in the realization that "where" may be too narrow a characterization of
the function of the dorsal system. Instead, there is ample evidence that the dorsal
system mediates motor interaction, in general. To be sure, location ("where")
is a critical component of successful motor interaction: To pick up a coffee cup
requires that one reach for the cup in a given location. If the cup is on the left
side, one cannot reach for it on the right. Similarly, the metrics and dynamics of
the grasp are closely tuned to the actual size and orientation of the handle. The
motor interaction is not limited to reaching and grasping but also includes other
motor functions such as navigation toward some location and avoiding obstacles
along the way.

We can now appreciate a possible computational basis for why two separate
visual systems might have evolved. The one for recognition must be able to ac-
tivate the same representation despite variation in stimulus parameters that are
critical for motor interaction, viz., position, size, and orientation in depth. Simi-
larly, motor interaction does not require knowing what the object is. That is, we
can reach for or navigate to or around an object without identifying it. It is our
conjecture that the motor interaction system employs metric information in a coor-
dinate space but the recognition system employs qualitative (viewpoint-invariant)
differences in a structural description.

4.3 Parts

We thus have ample evidence for invariances in recognition, but how can we de-
scribe the representation itself? Should it be the particular edges and vertices
presented in the image? Or a specific object model, such as a grand piano? Or of
the object's parts? Or all three? Somewhat surprisingly, there is a single answer to
this question. The magnitude of the perceptual priming is completely determined
by the capacity to activate representations of the parts of an object; there is no
contribution from the features (vertices and edges) actually present in the image
or the global shape or an object model.

Nature of the representation: Priming Contour-Deleted Images. To assess
what information is affected by priming, Biederman and Cooper (1991a) measured
naming speed and accuracy with briefly presented stimuli by deleting every other
image feature (edge and vertex) from each geon to create two complementary
images of each object, as shown in Figure 2. That is, the two images for each object,
when superimposed, would form an intact picture with no overlap in contour. The
complementary images were created in such a way that each part (or geon) of
the object could be recovered (or fail to be recovered) from each of the images.
Although complementary images shared no edges and vertices, they presumably



181

would activate the same components. Because the amount of contour deleted from
each image was substantial and included vertices, it is unlikely that a local process
of filling-in could have completed the contour of these images (see Biederman &;
Cooper, 1991a for a more complete discussion).

These results are supportive of an earlier demonstration by Biederman (1987)
who showed that pictures of common objects were unrecognizable when the con-
tour was deleted in such a manner that the geons could not be recovered. When
the same amount of contour deletion allowed recovery of the geons, recognition
could be perfect.

On a first block of trials, subjects viewed a number of brief presentations of
one member from each complementary pair which they named as quickly and as
accurately as possible. On the second block, they would see either the identical
image, its complement, or a same name-different

Figure 2: Sample complementary images produced by deleting alternate vertices
and edges from each geon. From Cooper, Biederman, & Hummel (1991).

exemplar image (also contour-deleted) from a category with the same name
and basic level concept but with a different shape. Mean correct naming reaction
times and error rates were markedly lower to the identical image than the different
exemplars, indicating that a portion of the priming was indeed visual. The critical
comparison, however, concerned the relative performance of the complementary
condition. If priming was a function of repetition of the specific vertices and edges
in the image, then the complementary condition would have been equivalent to
the different exemplar condition, as neither shared any features with the original
image. Remarkably, there was no difference in performance in naming complemen-
tary and identical images, indicating that none of the priming could be attributed
to the specific vertices and lines actually present in the image.

What then caused the priming? One possibility is that it was the parts (or
geons), as they were common in the two conditions. Another possibility is that
a semantic model of a subordinate category, e.g., a grand piano, rather than the
basic level category, e.g., piano, was activated in the initial presentation. To test
this possibility, an experiment was run in which complementary images were ere-
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ated by deleting half the parts of the objects. With these stimuli, presumably, the
same subordinate category would be activated from either members of a comple-
mentary pair, but through different parts. (This experiment required the use of
objects that would require at least six parts to look complete.) The design was
otherwise identical to that of the previous study. As with the first experiment, per-
formance with the identical images was better than with the different exemplars.
Now, however, performance with the complements was equivalent to that with the
different exemplars, indicating that none of the priming could be attributed to a
subordinate semantic model. By elimination, the two experiments, taken together,
suggest that all of the priming can be attributed to a representation of the parts
(and their interrelations) of the object.

4.4 Viewpoint-Invariant vs. Metric Properties?

But are these parts geons? Cooper k, Biederman (1993) recently reported a series
of experiments in which they compared the relative importance of differences in
aspect ratio of a part (a metric property) with a difference in a viewpoint invariant
characterization of the part. For example, a lamp that had a cylinder as its base
could have been changed to one of a different aspect ratio or the cylinder could have
been changed to a brick of the same aspect ratio. The results clearly supported
the greater importance of the geon changes. Similarly, Biederman & Gerhardstein
(1993) found that there was no effect of rotation in depth on recognition speed in a
priming task as long as the object could be readily described as an arrangement of
distinctive geons and the original geons remained in view. The rotation, of course,
altered the aspect ratio and degree of curvature of the objects.

5 JIM: A Neural Net Implementation of Geon
Theory

A neural net implementation of geon theory (Hummel & Biederman, 1992), termed
JIM (for John and Irv's Model), is a seven layer network whose architecture is
shown in figure 3 that takes as input a line drawing representing the orientation
and depth discontinuities of an object and activates units representing a viewpoint-
invariant structural description of the object specifying its geons and their rela-
tions. This description is activated regardless of whether the model has previously
been exposed to the object.

The model's capacity for structural description derives from its solution to the
dynamic binding problem of neural networks (specifying what goes with what):
Independent units representing an object's parts (in terms of their shape attributes
and relations) are bound temporarily when those attributes occur in conjunction
in the system's input. Binding is initially achieved through "fast enabling links"
(FELs) that phase lock the oscillatory activity of cells that are tuned to oriented
image edges (in the first layer, which is a toy VI). In particular, the FELs cause
synchrony in the firing of activated units that are collinear, parallel, or coterminate.

In the third layer (L3) of figure 3, for example, the units marked by filled circles
represent the attributes of a brick. These all fire together and out of phase with
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the units marked by the open circles, representing the cone, (s = straight; c =
curved for the Axis and Cross-Section, p = parallel; n = nonparallel for Sides.
v,d, and h refer to vertical, diagonal, and horizontal for the Orientation of the axis
[fine and coarse], b = bottom; t = top for Vertical Position.) Only 36 cells in that
layer are required to specify the information for each part. Because the binding
is temporary, these same cells can be used to code the other parts of the object
as well as the parts of other objects, no matter where they are in the visual field.
The binding is thus achieved without positing additional units for "anding."

L4 and L5 derive invariant, relations (so that the same "above" cell fires in
phase to the cone independent of where it is next located).The outputs of L3 that
represent the distributed values of a geon and its orientation and aspect ratio, along
with the outputs of L5 representing the relations, provide an input vector that self-
organizes a unit in L6, termed a geon feature assembly. Units in L7 are object
cells that self organize to an integration over successive outputs from L6. These
operations produce a parts-based structural description that is subsequently used
directly as a basis for viewpoint-invariant recognition. The model's recognition
performance conforms well to the results from the shape priming experiments.
Moreover, the manner in which the model's performance degrades due to accidental
synchrony produced by an excess of phase sets suggests a basis for a theory of visual
attention.

5.1 Binding via Fast Enabling Links (FELs)

A major contribution of the model is its proposal of a solution to the binding
problem-determining what goes with what. Each cell has two kinds of connections
to other cells: a) the standard connections that excite or inhibit the firing of a
target cell, and b) fast enabling links (FELs) that cause (enable) cells that are
simultaneously active to fire together if their receptive fields are: a) cocircular (or
collinear), b) closely parallel, or c) coterminate. If a cell fires, it passes activation
(i.e., excitation and inhibition) in a standard manner and an enabling signal over
its FELs. In general, the activation and inhibition will not be to the same units
that share FELs. The FELs produce synchronous firing of all the cells that are
activated by a given geon while allowing cells activated by different geons to fire out
of phase with each other. By not having FELs between the segments comprising a
T vertex, as where the sides of the cone in the image in Figure 3 occlude the back
edge of the brick on which it rests, the model causes all the features activated by
each geon to fire in phase, but out of phase with the features activated by other
geons.
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Figure 3: Neural net model for object recognition. From Hummel & Biederman
(1992). With permission of the American Psychological Association.
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6 Nongeonic Objects

We need to consider those classes of objects that ultimately achieve recognition,
such as those that do not readily decompose into parts or are highly irregular.
RBC predicts that these will, in general, be recognized more slowly than their more
regular counterparts. Moreover, where the differences are not geonic, viewpoint
invariance over depth rotation is lost (Biederman & Gerhardstein, 1993) and it
is unlikely that differences in entry level classes in any culture would distinguish
among such entities. The difficulty that people have with such objects serve to
confirm geon theory.

In some cases, however, recognition does proceed quickly, although any cur-
rently implemented geon finder would have a terribly difficult time. Often these
are with objects that have a great deal of decoration or detail. Our best guess is
that in such instances activation of geons at a coarse scale has occurred, despite
the detail. But it remains a challenge as to how to achieve such recognition in an
implemented model.

Faces may represent a special case, in which the two-layer networks are more
appropriate than an invariant-parts model. A face-recognition system of Buh-
mann et al. (1991) does an excellent job in recognizing faces, even with changes
in expression and modest changes in orientation. JIM would fail at this-it would
know that something was a face but not whose face it was. But Fiser, Biederman,
& Cooper (1993) showed that the Buhmann et al system was insensitive to the
effects of potent psychophysical variables in entry-level object recognition. For ex-
ample, it recognized nonrecoverable as well as recoverable images but recognized
a stored member of a complementary pair (as in figure 2) better than the comple-
ment. People cannot recognize nonrecoverable images and their recognition of a
complement is as good as the originally presented image of a complementary pair.

Evidence that face recognition may require a different solution can be seen in
the near impossibility of recognition in the presence contrast reversal (as with a
photographic negative) or rotation in the plane. Entry-level object recognition is
hardly affected by the former and only modestly by the latter. Perhaps it is not
surprising that a neurological condition exists, prosopagnosia, which is results in
impairment of face recognition but not entry-level object recognition.
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