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Abstract

In this paper we explore the use of texture or pattern information on
a 3D object as a cue to isolate regions in an image that are likely to
come from the object. We develop a representation of texture based
on the linear prediction (LP) spectrum that allows the recognition of
the model texture under changes in orientation and occlusions. The
candidate matching image regions are obtained without detailed seg-
mentation by a technique called overlapping window analysis. This
analysis, under some conditions, guarantees the existence of a window
spanning only the model texture regardless of its position and orienta-
tion which is sufficient for the recognition of the model texture using
the LP spectrum representation. Finally, we evaluate the utility of
texture-based selection in combination with other cues such as color in
the context of reducing the search involved in recognition.

1. Introduction
A key problem in object recognition is selection, namely, the problem of iso-

lating regions in an image that are likely to come from a single object. It has
been shown that such region isolation can considerably reduce the search involved
in the matching stage of object recognition [3]. However, the lack of knowledge
of illumination conditions and surface geometries of objects in a scene, and the
problems of occlusion, shadowing, specularities, and interreflections in the image
make it difficult to isolate regions that are likely to come from a single object.

We have been involved in developing an approach to selection using the paradigm
of visual attentional selection. Towards this end, an implementation attentional
selection has been developed that combines information from a variety of cues
such as color and texture to perform selection [8, 10]. In this paper we report on
the use of one of the attentional cues, namely, texture to perform selection in a
model-driven way, i.e by exploiting a model texture description.

Searching for an instance of a model object texture in an image is a difficult
problem as illumination or pose changes, and occlusions can cause the model
texture to appear different. In addition, it may not be possible to precisely locate
the model texture (i.e. segment it) in the image. Thus a texture-based selection
mechanism must be able to account for illumination and pose changes, occlusions,
and imprecise localization, and in this sense, becomes a different problem from
texture classification [1, 4, 6]. Nevertheless, existing texture analysis methods can
be relevant for texture-based selection, such as for example, the Fourier domain
approaches which can handle spatial extent differences and minor illumination
changes [7], and autoregressive and other parametric texture modeling techniques
[6, 1] which can be computationally efficient. Our approach to texture-based
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model-driven selection, as we will see next, combines the advantages of Fourier
domain and parametric methods of texture analysis.

2. Representation of Model Texture
The texture or pattern on the model object is assumed to be a planar patch

whose projection into the continuous image plane (orthographic projection)2 is
represented by a continuous signal sf^i,^)- The digitized version of this patch
can then be represented by the discrete signal s(m,n) where m and n stand for
the two coordinate axes of the discrete image plane and s is the intensity signal at
those locations. If the texture region s(m, n) is obtained by using a sampling rate
much above the Nyquist rate, then it is well-known that its samples are dependent
on each other. One way to model this dependency is to say that the signal sample
at a location can be predicted from its neighboring samples in a linear predictive
fashion. That is, the 2D texture region s(m,n) can be modeled as the output of
a 2D linear system with some unknown input u(m,n) so that the texture can be
characterized by the impulse response of this linear system as

P Q

s(m,n) = 2^ ^2 aki.s(m - k,n —1) + Gu(m,n) (1)
'= — Q

where a^i are the coefficients of the impulse response of the linear system and are
called the autoregressive (AR) model parameters or coefficients. G is the gain of
the system, and (2P+l)x(2Q+l)-l represent the order of the AR model, i.e., the
number of coefficients of the linear system.

Although the AR model is a compact and computationally simple representa-
tion of a texture that is also relatively insensitive to minor textural variations and
spatial extent differences, it is not a good domain to examine differences between
the model texture and a candidate matching texture region. Earlier methods that
used this domain to examine textural differences [1] could mainly detect textural
difference in microtextures and further, could not account well for variations in
illumination and orientation changes. So, following the advantages of Fourier rep-
resentations mentioned earlier, we examine a frequency domain interpretation of
the AR parameters called the linear prediction spectrum. The linear prediction
(LP) spectrum is defined as the power spectrum of the transfer function of the
linear system represented in equation 1 and is given by [9]

The linear prediction spectrum is known to be an approximation of the power
spectrum that is good at high energy peaks than at low energy peaks [9]. Thus
comparing the LP spectra of a model texture and a candidate matching texture
region amounts to comparing the respective power spectra with the essential in-
formation (high energy peaks) highlighted. Also, the LP spectrum is computa-
tionally more efficient compared to Fourier representations. The LP spectrum
approximates the power spectrum in a ratio sense (by minimizing the ratio of

2The selection method works even when these assumptions are not strictly observed as we
will see in the examples.
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power spectrum to the LP spectrum)[9]. This results in a smoothed spectrum
that can be coarsely sampled. The lower sampling rate can be derived from the
definition of LP spectrum in equation ( 2) which involves computing the Fourier
transform of the AR parameters (and there are only (2P+l)x(2Q+l) of them as
compared to M x N samples in a texture region of size M x N). Finally, as we shall
see next, the LP spectrum tracks orientation changes undergone by a texture in
a way that allows the matching of texture under these changes. These properties
make the LP spectrum an appropriate representation for texture-based selection.

3. Texture Matching using Isolated Image Texture Regions
We now consider the problem of matching a texture patch obtained from one

of the 2D views of a 3D model object3 with a given texture region isolated from
the image. Using the LP spectrum representation described above, the 2D texture
patch can be described by the tuple < a.Mpq, L\i(u)\, u>2) >. Any texture region in
the image can similarly be characterized by the tuple < aiPq,Li(uii,L02) >• Since
the matching of model and image texture LP spectra must account for the fact
that the pose of the model object in a given scene may not be as it appeared
in its original description, we first examine the effect of pose changes on the LP
spectrum representation of the model texture.

Since the surface texture on the model object is assumed to be planar, as the
object undergoes a 3D linear transformation in space, the image of the surface
texture undergoes an affine transformation [5]. It can be easily shown that the
Fourier power spectrum and hence the LP spectrum are invariant to translation
so that we need to consider those orientation changes of texture that represent a
2D linear transformation.

We now see the effect of linear transformation of a texture on its LP spectrum.
Let the image texture region corresponding to the surface texture on the model
object be denoted by a continuous 2d signal s(t\,t2). Let Mt x Nt be its size in
continuous coordinates. Let its discretized version be denoted by s(m, n) where
s(m, n) = s(mTi,nT2) with the sampling rate being (Ti,T?,). Then its sampled size
can be denoted by MxN where M*TX > Mt and N*T2 > Nt. Suppose the surface
texture patch undergoes an orientation change. If a new image is created of the
changed texture, and assuming the sampling rate remains (T\, T2), (which is true if
both textures are imaged using the same camera with lens of the same focal length),
then the new image texture representing the changed surface texture is denoted
by s (mr,nr). Since the effect of 3D linear transformation of surface texture is
a 2d linear transformation (translation ignored) in image plane, the coordinates
of the changed signal (image texture) given by (?nrXi, nrT2) correspond to some
coordinates (moTi,noT2)4 as follows:

/ m ( a bf
T2 )~{c d ) \ n0T2

Using the above relation, the transformed signal s (mr,nr) can be expressed in
3The 2D views constitute the 3D model description in a recognition system.
4the notation (mo.no) is used to denote the fact that the corresponding points can be real

numbers unlike (m,n).
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terms of the untransformed signal s(m,,n) as

s (mr,nr) = s(mo,no) (4)

An alternate interpretation of the above equation is that the new signal s (m r , nr)
is a periodically resampled version of the continuous signal s(^i,*2)? with the sam-
p l e s l o c a t e d a t (k.d.Ti - l.b.T2,-k.c.Ti +l.a.T2), w h e r e k - aX-bc'

 l ~ ad-bc'

and 0 < mr < Af', 0 < nr < N'.
If we denote the Fourier transforms of the model and the transformed model

textures s(m,n) and s (mr,nr) as F(wi*u2) and F (u>ir-,u>2r) respectively, then
[8]

F (u)lr,Lj2r) - F(wXo,u;2o) (5)

where

(
rr\ — ̂

/ a b \ \ / wio \ ,_>

U d)) U o J • (6)

Similarly, if we denote the linear prediction spectra of the model and the trans-
formed model textures s(m,n) and s (mr,nr) as L(a,'i, t^) and L (ojir,ui2r) respec-
tively, then [8]

L (uir,u}2r) = L[uio,u;2o) (7)
The proof of the above relationships is available in [8] and is skipped here for

brevity. The above equalities, however, hold under the assumption that the doubly
periodic sampling rate mentioned before is above the Nyquist rate. A case where
this breaks down is when large scale changes occur. A reduction in the size of
the signal causes an expansion of the Fourier spectrum so that if the sampling
rate is kept fixed (using the same camera with the same focal length, say) then
the periodicity of the Fourier spectrum remains the same. This may eventually
cause aliasing to occur so that the Fourier spectra can no longer be recognized as
transformed versions of each other. For such large scale changes, it may not be
possible to spot the resemblance between the two textures in the spatial domain
either.

We conclude, therefore, that the Fourier transform and the linear prediction
spectrum are not invariant to an affine transformation but instead as the image
texture undergoes a linear transformation, they undergo an inverse linear trans-
formation. This is a generalization of the previously known results on the effect
of scaling and 2D (in-plane) rotational changes on the Fourier transform [2].
3.1 Matching of image and model LP spectra

When the image texture region contains an instance of the model's texture (i.e.
assuming perfect isolation), then by the above results, its LP spectrum reflects
the orientation change. The parameters of such an orientation change given by
a, b, c, d in equation ( 3) can be recovered from the LP spectrum by finding a pair of
corresponding frequencies {(wu0, Ui2o)(wiir, ̂ I2r)} and {(w2io, w22o)(^2ir, ̂ 22r)}
between the model and image LP spectra respectively and using equation 6 to solve
for the transformation parameters a, 6, c, d. To find these pairs of corresponding
frequencies,we observe from equations ( 5) and ( 7) that as the texture undergoes a
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linear transformation, the location of the spectral peaks (in LP or Fourier spectra)
changes but their amplitude remains invariant. Since the identity of peaks is
retained (and hence their relative ordering by strengths), the two highest energy
peaks of the LP spectra can be paired in the ideal case. In practice, however, since
the image texture region may not have been perfectly isolated, or because of the
illumination changes from model to image, the amplitude of the peaks in the LP
(and also Fourier) spectra will be affected differentially, so that the highest energy
peaks in the model's LP spectrum may no longer be of highest energy in the image
texture's LP spectrum. Thus search may have to be done among the peaks in the
LP spectra to find two corresponding pairs of peaks. This requires O(/i'2L2) pairs
to be examined where K = number of peaks in the model's LP spectrum, and L
= number of peaks in the image region's LP spectrum. Since the LP spectra have
only a few peaks, this is still computationally feasible. Once the transformation
parameters are obtained, the model and image region's LP spectra can be aligned
using these parameters5. The correct set of parameters will ideally align all of the
model texture's LP spectrum to the windowed region's LP spectrum indicating a
match between the two LP spectra. This, however, ignores the effect of sampling
in the LP spectra which can affect the accuracy of the transformation parameters
and hence the recovered pose. A more detailed discussion of this problem and an
approach to overcome this is available in [8]. Also mentioned there is a way of
matching LP spectra when spurious or missing peaks occur due to illumination
changes.

4. Extraction of Image Texture Regions v
The method of matching LP spectra described above required the isolation of

an image texture region that contained only the model texture (even if not all of
it is isolated). Such regions can be obtained, under some conditions, without an
elaborate texture region segmentation of the image. This can be done by moving
a window over the image and maintaining overlap between successive window
positions as indicated in Figure 1. We now show that under some conditions, it is
possible to find a window that spans only the model texture region regardless of
the position and orientation of the model texture in the given image. For this, we
first consider the case when the model texture in the image appears as a rectangle
of size N\ x N2. Suppose we choose to analyze the image of dimensions I\ x I2

using rectangular windows of size M\ x M2 and an overlap of L\ x L2
 a s shown

by the rectangles A and B in Figure 1. Suppose the rectangular patch of texture
occurs at a location (x,y) in the image as shown by the rectangle C in that figure.
Each analysis window starts at a location (k.Li,l.L2) where k and 1 are integers
such that 0 < h < I / ^ ' J and 0 < / < L^̂ TT Ĵ- A window that spans only
the model texture region must satisfy the constraints for its starting location as
k.Li > x and k.L\ < x + Ni and k.Li + Mj < x + N\ for the x-coordinate
and similarly l.L2 > y and l.L2 < y + N2 and l.L2 + M2 < y + N2 for the for
the y-coordinate (by the rectangle containment rule). These constraints reduce to
finding an integer value of k such that •£- < k < N\+^~Mi . Such values of k and I
exist provided *i+*-Mi-» > 1? and N,+y-M2-y > ^ ^ ^ M i + L i < Ni and

5The idea of alignment in frequency domain parallels the alignment in space domain proposed
earlier[ll]
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M2+L2 <N2.
Thus, as long as we choose a window size smaller than that of the texture and

an overlap such that L\ < N\ — M\ and L2 < N2 — M2, we can scan the image
using overlapping windows and find a window that spans a portion of the model
texture region.

Next, consider the case of an actual instance of the model texture appearing in
the image. We assume for simplicity that the texture on the model object is square-
shaped of dimension N x N 6. Then under linear transformation of the model
object, the square texture region undergoes an affine transformation (specified by
the parameters a,b,c,d, again ignoring translation) to form a parallelogram as
shown by the shape marked E in Figure 1. Within this parallelogram, we can
inscribe a rectangle of largest area by considering the closest opposite vertices as
shown by the rectangle marked F in Figure 1. The dimensions of this rectangle
indicated by N3 x N4 are a function of the transformation and are given by Ar

3 =
(a — b)N and N4 = (d — c)N. Then by the previous analysis on rectangular
texture regions in an image, if the overlapping windows satisfy the constraints
Mi + Li < Ar

3 and M2 + L2 < N4, then a window containing only the model
texture region will be found. Although the dimensions JV3 and JV4 are unknown,
we can place a bound on these values by restricting the allowable transformations
on the model object (and hence the model texture) by requiring (a — b) > s and
(d — c) > s, where s is chosen to lie between 0 and 1. This bounds the dimensions
N3 and N4 to be such that s.N < N3 < N and s.N < N4 < N. With this bound
on the dimensions, the windowing constraints can be satisfied by choosing the
overlap and window dimensions such that

Mi + Li < s.N (8)
M2 + L2< s.N (9)

5. Texture-based Model-driven Selection
We now combine the concepts of moving window analysis, the LP spectrum

representation, and the matching of LP spectra described before, to develop a
texture-based model-driven selection mechanism as follows. First, the model tex-
ture is described by its LP spectrum using a suitable order AR model. Then the
dimension N of the largest square region containing the model texture is noted.
Next, a bound s is chosen to limit the allowable transformations. The values of s
and N are used to decide the window width (M\,M2) and the overlap (L\,L2) as
specified in equation 8 and 9. The image is analyzed by the overlapping windows,
and the image region within each analysis window is described by its LP spectrum
using the same order AR model as the model texture7. The LP spectrum of each
window is then tried as a possible match to the model texture's LP spectrum as
described in Section 3.1. The best few matches in the image are taken to indicate
the possible places where the model texture (and hence the model object itself)
could appear in the image.

6 Restricting to square shape is not critical since a square can be inscribed in any arbitrary-
shaped texture region on the model object.

7 If the image region contains the model texture then for limited scale changes, the neighbor-
hood of pixel dependence in the texture will remain the same, justifying the choice of the same
order AR model for the image region
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We now illustrate texture-based model-driven selection by an example. Fig-
ure 2a shows a view of the model object (cup) and the texture patch on it that
serves as model texture is shown in Figure 2b. The LP spectrum (using a 32x32 pt.
FFT) of the model texture using a 2x2 non-causal AR model is shown in Figure 2c.
Figure 2d shows a scene in which two instances of the model object appear, one of
them reflecting a 3d affine transformation and appears at a different imaging dis-
tance (small increase in the apparent size of the object). Since the model texture
patch was of size 72 x 52 (was later zero-padded to form a square of size 72 x 72),
the image was analyzed using windows of size 48 x 32 with an overlap of 24 x 16
(here s was chosen to be 1.0) to satisfy the constraints of equation 8 and 9. The
various windows in which a match for the model texture was found are shown in
Figure 2e. The LP spectra for some contiguous overlapping window regions that
were found to match the model texture's LP spectra are shown in Figures 2f-i.
As can be seen from the figure, although the correct matches are found where the
model object exists, there are also a few spurious matches. In general, the match
measure is designed to tolerate some missing and spurious peaks [8] so that it can
occasionally cause some false positives to occur even after the correct alignment
is obtained using the method described in Section 3.1. These false positives can
usually be eliminated when texture-based selection is used in combination with
other cues such as color as we will see in the next section.

6. Recognition in Combination with Selection
We now examine the use of texture-based selection in reducing the search in-

volved in object recognition. We have developed a recognition system based on
alignment by the linear combination of views method [11] and integrated it with
texture-based selection. Here, the model object is represented by a set of 2d views
with full correspondence between them. Corner features extracted from both the
model and image were used to perform the alignment and line segment features
were used for doing the verification. The search for corresponding alignment fea-
tures was done using an interpretation tree type search driven from the image
features [3]. Texture-based selection is then performed on the image. However,
since the model texture region was assumed to be planar, texture-based selection
alone is not sufficient for the recognition of a 3d object (at least one of the fea-
tures needed for an alignment transform must come from outside a planar region)
[11]. For this reason, and to prune the false positive matches that texture-based
selection may give, we combined texture-based selection with color-based selec-
tion as described in [10] and chose the rest of the corresponding features from
color-selected regions. Thus the texture regions that lay within the color selected
regions only were retained as matches from texture-based selection. Finally, the
regions isolated by texture and color-based selection were used for finding the
corresponding features for recognition.

Figure 3 illustrates the combined use of color and texture for selecting regions
for recognition. Figure 3a shows a model object possessing both color and tex-
ture information. The color description used for color-based selection is shown
in Figure 3b while the texture patch used for texture-based selection is shown
in Figure 3c. Figure 3d shows a scene in which the model object occurs. The
result of color-based selection is shown in Figure 3f while the result of texture-
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based selection is shown in Figure 3e. The result of the combined use of color and
texture-based selection is shown in Figure 3g. As can be seen from this figure, the
false match shown in Figure 3e is removed by the use of color information.

To test the contribution of texture-based selection in reducing the search in
recognition, we considered several (around 600) random orderings of the list of
corner features in the texture regions in such scenes, and recorded the average
number of matches that needed to be tried before finding a tuple of features that
is part of the overall winning combination (i.e. is successfully verified by the
recognition system). These results are shown in the last column of Table 1. Here
the number of matches actually explored by the recognition system for finding
seven corresponding corner features are listed. As can be seen from the table, the
number of matches that are explored in practice are far fewer compared to the
case of recognition without any prior selection (shown in Column 8 of Table 1).
In fact, compared to the number of matches explored, detailed verification was
done for only a few (about a 1000) of the matches. From this we conclude that the
combined used of texture and color-based selection can lead to a vast improvement
in the performance of a recognition system.

7. Conclusions
In this paper, we have advocated autoregressive modeling of textures and the

resulting linear prediction spectrum as an appropriate representation for address-
ing the problems in texture-based model-driven selection. We have also demon-
strated that this selection mechanism can greatly improve the search performance
during recognition and can hence serve as useful front end for a recognition system.
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S.No

1.
2.
3.
4.
5.

M

114
96
96
64
138

N

484
580
1401
256
392

A/i

35
84
84
52
58

-V,

38
74
76
47
145

Color selected corners in
model
69
12
12
12
80

image
45
34
25
31
67

Estimated search
No selection
1.55 x 10"
1.66 x 10"
7.96 x 10"
3.17 x 1029

1.35 x 10"

Actual search

2.37 x 10"
3.67 x 106

7.8 x 106

1.67 x 105

2.38 x 107

Table 1: Estimated and actual search reduction during recognition using selection.
The estimated search is obtained assuming 7 alignment features so that a search
of O(M'N1) is required in the worst case. The actual search indicated in the last
column is obtained by the combined use of texture and color-based selection as
described in text.

Figure 1: Illustration of overlapping window analysis. The windows labeled A and
B are two overlapping windows used to analyze the image. The extent of overlap
is indicated by (Li,Li). A rectangle D that spans only the texture region in the
rectangle C always exists under the conditions indicated in text. The parallelogram
marked E represents the result of a 2D affine transformation on an originally square
texture region. The windowed region marked G spanning a portion of E can always
be found under the conditions indicated in text.



74

Figure 2: Illustration of model-driven selection using texture, (a) A view of the
model object, (b) An extract serving as model texture, (c) The LP spectrum
of the model texture using a 2 x 2 non-causal AR model, (d) A scene in which
instances of the model object occur, (e) Result of model texture-based selection,
(f) - (i) The LP spectra of some of the windowed regions of (e) that were matched
to the model texture bv the match measure described in text.

(f) (g)

Figure 3: Illustration of the use of color-based selection to reduce false positives
in texture-based selection, (a) A view of the model object, (b) Color description
of the model, (c) Texture patch on the object used as model texture, (d) A
scene in which the object appears, (e) Result of texture-based selection. The false
positive match is to be noted here, (f) Result of color-based selection, (g) Result
of retaining texture-selected regions that lie within color-selected regions.


