
Non-Wildcard Matching Beats The
Interpretation Tree

Robert B. Fisher
Dept. of Artificial Intelligence, University of Edinburgh

5 Forrest Hill, Edinburgh EH1 2QL, Scotland, United Kingdom

Abstract

Probably the best known control algorithm for high-level model matching
in computer vision is the Interpretation Tree expansion algorithm, popu-
larized and extended by Grimson and Lozano-Perez. This algorithm has
been shown to have a high computational complexity, particularly when
being applied to matching problems with large numbers of features. This
paper introduces a non-wildcard variation on this algorithm that has an
improvement of about 4-10 in performance over the standard Interpreta-
tion Tree algorithm.

1 Introduction

Probably the most well-known control algorithm for high-level model match-
ing in computer vision is the Interpretation IVee(IT) expansion algorithm, as
used by Grimson and Lozano-Perez[2]. The IT algorithm searches a tree of
model-to-data correspondences, such that each node in the tree represents one
correspondence and the path of nodes from the current node back to the root
of the tree is a set of simultaneous pairings.

Unfortunately, this algorithm has the potential for combinatorial search
explosion. This has prompted researchers to develop techniques for pruning
the trees, thus limiting the number of matches considered. The main technique
commonly used is based on pruning constraints[2] (which locally reject pairings
that are inconsistent, and hence eliminate all of the search that might further
extend this inconsistent pairing) and early termination[4] which stops search:
(1) at the first hypothesis with a given number of pairings, or (2) at any time
that it is impossible to make sufficient pairings with the remaining potential
matches. However, even with these effective forms of pruning, the algorithms
still can have an exponential complexity, making them unsuitable for use in
scenes with many features.

As reported by Grimson[4], the main cause of the exponential complexity
is the use of a "wildcard" match feature. This paper discusses and analyses a
variation to the standard IT algorithm that explores a different tree without
using a wildcard and requires 4-10 times less work.



561

2 The Standard Interpretation Tree
Algorithm

Consider a set { <f; } of D data features and a set { m* } of M model features.
Then, the root of the interpretation tree has no pairings. The first level expands
the root node to pair all of the M model features with data feature d\. The
second level in the tree expands each of these nodes to pair all model features
with data feature d^ (multiple pairings are allowed), and so on. The expansion
continues for all D data features. At each node at level k in the tree, therefore,
there is a hypothesis with k features matched.

If this IT were explored completely, there would be MD "leaf nodes at the
bottom of the tree (i.e. these many complete interpretations) and

±" = £?
«=o

nodes in the full tree. If either M or D are of any reasonable size (e.g. larger
than 5), then we can expect to have excessively large search trees.

An additional complication is that one usually wishes to include a "wild-
card" model feature that will match with any data feature. This is necessary
because it may not always be possible to find a model feature that matches
the data feature at the current level of the tree (because of fragmentation, bad
segmentation, noise, unrelated features, etc.).

One way to reduce the amount of searching is to 'prune whole branches of
the tree', by showing that a given pairing or sequence of pairings is inconsistent.
Therefore, all descendents from that node in the tree will also be inconsistent
and need not be explored. The most common approach uses unary and binary
pruning constraints. Unary constraints eliminate model-to-data pairings when
some shared property is inconsistent. Binary constraints eliminate hypotheses
when a relative property between a pair of model features is inconsistent with
the same property between the corresponding pair of data features. For ex-
ample, Grimson and Lozano-Perez[2] provide a set of binary constraints useful
for three-dimensional scene analysis, based on pairwise consistency constraints,
that compare quantities such as relative distance, orientation and direction.
Similar constraints can be developed for higher-order consistency (e.g. vector
triple products). Of particular importance is the local nature of the consis-
tency tests, based on the assumption that a few simple, fast tests on partially
generated hypotheses will eliminate large numbers of globally inconsistent hy-
potheses.

In the discussion below, the following quantities are used:

• there are M model features in the model.
• on average, pv M of these are visible in the scene (less than M by occlusion,

being on the back side of the object, etc.). In 2D scenes, pv = 1 and,
in 3D scenes, pv = 0.5 as about half of the features are back-facing and
hence not visible.

• of the visible model features, only pr of these are recognizable (less than
those visible because of segmentation failures, etc.) forming C = prpvM
correct observable data features. (If the model chosen for this scene is



562

2

le+05

5

2

le+04

5

2

le+03

5

2

- 1

-

-

-

-

-

/ " y

/ -
{ _

-

-

1 1

2

le+03

5

2

le+02

5

2

le+01

5

1

—

> • • • • • • "

1

-

r

NEW

M
le+01 3 le+02 le+01 3 le+02

Figure 1: Generated and Accepted Nodes versus Number of Model Features
(M) with S = 20 pr = 0.95 pi = 0.1 p2 = 0.01 pv = 0.5 r = 0.5 (loglog plot)

incorrect, pr = 0.) Which C of the M model features are matchable is
not known initially.

• there are also S spurious data features (including noise features and visible
model features that are not recognizable); hence altogether there are D =
C + S data features.

• the probability that a randomly chosen model feature matches with an
incorrect random data feature is pi (correct pairings alway match).

• the probability that a random pair of model features is consistent with an
incorrect random pair of data features (given that the individual model-
to-data pairings are consistent) is pi-

• an acceptable set of model-to-data pairings must have at least T = rpv M
non-wildcard correspondences (r £ [0..1]). Whenever this many are
achieved, then the whole matching process terminates successfully im-
mediately. Any set of matches that can never get T matches (because
insufficient potential matches remain) is terminated immediately and the
matching process proceeds to considering other matches.

In the discussion that follows, the term generated refers to nodes and paths
that are created prior to testing the consistency of the node or path, and
accepted refers to nodes or paths that pass the consistency tests.

Grimson[3] analyzed the combinatorics of the standard algorithm, and showed
that, without wildcards, the algorithm tends to accept (Proposition 5, pg 274)
a single path with many pairings (i.e. the correct one), and generates (Propo-
sition 6, pg 274) a number of nodes that is quadratic in the number of model
features. However, allowing a wildcard means that the algorithm will accept
an exponential number of correctly matchable features. One key term is 2C,
arising from the power set of the C matchable features. The complexity occurs
because each matchable data feature can be either matched with the correct
model feature or the wildcard. Examination of a typical search tree shows that
most of the tree consists of paths containing either members of this power set



563

le+05 -

le+04

5

2

le+03

5

2

le+02

5

2

H

-

-

-

-

--—*

i

1 H

/ -

/

1 1

NEW

Iff""

S
le+OO le+01 le+02 le+OO le+01 le+02

Figure 2: Generated and Accepted Nodes by Spurious Features (S) with M =
40 pr = 0.95 pi = 0.1 p2 = 0.01 pv = 0.5r = 0.5 (loglog plot)

or wildcards. Many of these paths can be eliminated by using the termination
threshold described above. This can only apply when the search is sufficiently
advanced, but it does make a significant improvement.

Grimson[3] analyzed the consequences of this termination condition and
showed (Corollary 3.2, pg 367) that if:

p2MD < 2

then the expected number of nodes generated is bounded by:

MD2 . . ̂  TMD2

——— < num.generated < al ——-
C C/

where a is a small constant. There might be some problems with the exact-
ness these bounds, but the conclusion that the use of a termination condition
improves performance is valid.

Unfortunately, the p2MD < 2 condition given above does not always hold,
in which case the algorithm again seems to be exponential. In fact, in the
experiments described below, it only holds for the smallest test cases.

3 The Non-wildcard Matching Algorithm
The vast number of nodes in the standard algorithm arises because of the use
of wildcards. An alternative search algorithm explores the same search space,
except does not use a wildcard. The essence of the difference is the search
process skips over all data pairings that use a wildcard, to consider the next
true data-model feature pairing. This results in a flattening of the search tree.
The algorithm has two phases:

1. The set Q = {sk} = {(m,-^), <*,-(*))},* = 1..-/V of all pairs of features
satisfying the unary pairing constraints is formed, such that if sr is before
s, (i.e. r < s), then j(r) < j(s).



564

2 -

le-01 3 le-01 3
Figure 3: Generated and Accepted Nodes by Unary Match Probability (pi)
with M = 40 5 = 20 pr = 0.95 p2 = 0.01 pv = 0.5 r = 0.5 (loglog plot)

2. A different search tree is explored, in which each extension of a branch is
formed by appending new entries from Q, subject to the constraints that
(1) each data feature appears at most once on a path through the tree
and (2) the data features are used in order (with gaps allowed).

Starting from a branch ending with pair s\ (or nothing at the root of the tree),
all pairs SA+I • • -SN are possible extensions to the branch. Only extensions that
satisfy the normal binary constraints are accepted. Extension stops when the
termination number of matches is reached, or on branches where insufficient
possibilities remain in the tail of Ci.

For example, if fi = {si,s2, *3,s4} = {(m2, di), (m4, d2), (mi,d2), (m5,d4)},
the tree:

X

S4 S4
S3

SiS2
S4 S4

is searched depth first following the leftmost branches first (no pruning is shown
here to illustrate the shape of the tree). The initial step considers the individual
model-data pairings once (i.e. the unary constraints are tested once instead of
whenever needed, as in the IT tree). As the second and third levels of the new
search tree contain complete matches, the binary constraints eliminate almost
all false pairings quickly. The trade off is that the branching factor of the
new tree is sizeof(Q) instead of M. This search algorithm can produce the
same set of hypotheses as the standard IT algorithm, with respect to the data
features paired to non-wildcard model features. The order of generation may
be different when the termination threshold is used.

4 The Experiments
To demonstrate the effectiveness of the non-wildcard search algorithms, we
use the following experimental problem. The approach is designed to allow



565

comparison of methods for which no formal complexity measure has yet been
determined, and also to allow comparison of algorithms within the same com-
plexity class. The problem is based on an example described in Grimson[4].
The experiments use simulated data; however, Grimson showed that the model
and simulation gave a reasonable characterization of real matching problems.
The use of the simulated problems then allows us to compare the algorithm
performance on the same data sets of varying sizes.

Based on the problem model given in Section 2, each model-match experi-
ment of the two algorithms will consist of:

1. Initially determining a random selection of C of the D data features to
be the solution.

2. For each generated model-to-data pairing, a correspondence that is not
part of the solution and does not use a wildcard is accepted if the new cor-
respondence is individually satisfied with probability pi and the new cor-
respondence is pairwise satisfied with each previously filled non-wildcard
feature with probability p2 • Correspondences that are part of the solution
or use the wildcard are accepted.

The experiments with the non-wildcard search tree algorithm are similar. For
the experiments described in this paper, we used:

PARAMETER
M
S
Pi
P*

T

Pv
Pr

NOMINAL
40
20
0.1
0.01

0.5
0.5
0.95

RANGE
5 to 100 by 5
0 to 100 by 5
0.05 to 0.75 by 0.05
0.001, 0.002, 0.004, 0.008, 0.01, 0.02, 0.04,
0.06, 0.08, 0.10, 0.12, 0.14, 0.16, 0.18, 0.20
0.2 to 0.9 by 0.1
no variation
no variation

In each experiment described in this section, one parameter was varied
over the range given above and all others were set to the nominal value. All
experiments were run 200 times and the value reported is the mean value.
The graphs in Figures 1-5 given show how the number of nodes generated and
accepted varied with the parameters for the new and standard IT algorithms.

As we look over the results, which explore a substantial portion of the pa-
rameter spaces likely to be encountered in visual matching problems, we can
see that the non-wildcard is clearly better than the standard IT algorithm.
In search, the non-wildcard algorithm is not bad for most problems, but its
performance deteriorates as pi increases (this increases the number of possible
matches to consider at each stage). For acceptances, the non-wildcard algo-
rithm is also the better, as it does not allow proliferating wildcard hypotheses.
Except when p\ is large, the non-wildcard algorithm did about 4 times less
search and 10 times less accepting than the standard algorithm.

One might also consider how the two algorithms perform when there is no
instance of the object in the scene. Then, it is unlikely that the early success
conditions would occur, and thus almost all of the search space would have to
be explored. Figure 6 shows the number of nodes generated and accepted in



566

le-03 le-02 le-01 le-03 le-02 le-01
Figure 4: Generated and Accepted Nodes by Binary Match Probability (p2)
with M = 40 5 = 20 pr = 0.95 pi = 0.1 pv = 0.5 r = 0.5 (loglog plot)

this case. When there is no true match possible, the non-wildcard is still much
better, but in both cases much more work is done (e.g. about 10-30 times more
work). Grimson ([3], page 389) shows that the standard algorithm is also much
worse when no match is possible.

5 Computational Complexity of the
Non-Wildcard Matching Algorithm

Grimson[3] has mainly concentrated on estimating upper and lower bounds
for the standard algorithm. As seen in the results from the previous section,
the non-wildcard search algorithm looks very promising. Hence, we give here
a complexity analysis for that algorithm, except that we state here (without
proof) the mean performance of the algorithm.

Theorem 1 (Mean Complexity of Non-Wildcard Algorithm) Given the
problem definitions from above, there are expected to be C true pairings and
F = pi(MD-C) false pairings that arise from the initial model to data feature
matching. Assume that M and D are very large, so that the effect of matching
one feature does not significantly affect the rest of the algorithm. Also assume
that no false hypotheses containing 3 or more pairings survive the pruning tests
(i.e. Fp2 < I)- Then, the expected amount of search is approximately:

MD + T + £(C + F) + P2^(C + F -T)(C + F -T + 1)) = O(M5)

and the expected number of hypotheses accepted is approximately:

T + £ +P2^(C + F -T + 1) = O(M3)



567

1.5

le+04

8

6

5

4

1

_

-

-

-

1

• • - . .

V
-
--

4-2
Tau

42 #5 *
Figure 5: Generated and Accepted Nodes by Acceptance Threshold (r) with
M = 40 5 = 20 Vr = 0.95 pi = 0.1 p 2 = 0.01 *>„ = 0.5 (loglog plot)

6 Discussion and Conclusions
As Grimson observed, most of the complexity of the standard interpretation
tree search is a consequence of the use of "wildcards" to overcome missing and
erroneous data. However, merely having "good" data does not mean one can
avoid the use of the wildcard, because the so-called false features may have
arisen from other objects in the scene, or other subcomponents of the object
being recognized. Hence, the wildcard is likely to remain a key element of the
general interpretation tree search algorithm. If one could assume that there
were only a limited amount of scene clutter, then one might limit the use of
wildcards to a specific number. However, more than one or two would still
allow a considerable number of partially empty hypotheses.

From the experiments, it is obvious that the non-wildcard algorithm pro-
duces better performance than the standard IT matching algorithm. For the
non-wildcard algorithm, the real work occurs at the first or second step, which
effectively requires a comparison between all model and data features. As any
model feature might be an explanation for any data feature, it is hard to avoid
this complexity, which results in MD initial comparisons and roughly piMD
false acceptances, which provides a lower bound on the amount of work re-
quired. After that, a reduced search space needs to be considered, but the
initial effort is substantial. There does not seem to be much possibility of re-
ducing this amount of effort, unless some additional aspect of the particular
problem can be exploited.

Real benefits can be gained by reducing the number of features that need
to be considered at a time. If the data features can be partitioned into K
subsets, which can be matched independently, and the models features can
also be partitioned into L corresponding subcomponents, then the brute-force
version of the matching algorithm is reduced from MD to:



568

-

-

A

1

NEW

M
le-tOl 3 le+01 3

Figure 6: Generated and Accepted Nodes versus Number of Model Features
(M) When No Instance of the Model is Present with S = 20 pr = 0.95 px =
0.1 p2 - 0.01 pv = 0.5 r = 0.5 (loglog plot)

which is considerably less. This requires perceptual organization [5], such as a
region or surface patch grouping (e.g. [1] Chapter 5).

The analysis above also assumed that only one model needed to be consid-
ered when matching. If all models must be considered, then the computational
complexity will be high, as the results in Section 4 showed. Hence, some form of
model invocation method is needed to reduce the number of candidate models
(e.g. [1] Chapter 8, [3] Chapter 15).

The net conclusion is that by using the non-wildcard algorithm as an al-
ternative to the standard interpretation tree visual matching algorithm, it is
possible to reduce the amount of search by a factor of about 4 and number of
partial interpretations accepted by a factor of 10, where the precise amount of
improvement depends on the problem parameters. Both factors are important,
because, depending on the particular matching algorithm, the savings achieved
depend on relative costs of each action (e.g. the pairwise consistency checking
costs may high relative to final verification costs).

The relative speed difference of the implemented matching algorithms might
overcome this reduction in theoretical search complexity. However, the M =
100 case from Figure 1, matching requires 1.27 seconds for the non-wildcard
algorithm, as compared to 5.4 seconds for the standard algorithm (on a Sparc-
Station 1+). Hence, the speed of the non-wildcard algorithm is also significantly
better than the standard algorithm in the implementations compared.

Acknowledgements

This research was funded by SERC (IED grant GR/F/38310). Other facilities
provided by University of Edinburgh. This paper benefited greatly from dis-
cussions with Dibio Borges, John Hallam, Howard Hughes, Mark Orr, Kristian
Simsarian, Manuel Trucco and Mike Uschold.



569

References

[1] Fisher, Ft. B., From Surfaces to Objects: Computer Vision and Three
Dimensional Scene Analysis, John Wiley and Sons, Chichester, 1989.

[2] Grimson, W. E. L., Lozano-Perez, T., Model-Based Recognition and Lo-
calization from Sparse Range or Tactile Data, International Journal of
Robotics Research, Vol. 3, pp 3-35, 1984.

[3] Grimson, W. E. L., Object Recognition By Computer: The Role of
Geometric Constraints, MIT Press, 1990.

[4] Grimson, W. E. L., The Combinatorics of Heuristic Search Termination for
Object Recognition in Cluttered Environments, Lecture Notes in Computer
Science, ECCV-90, Springer-Verlag, pp 552-556, 1990.

[5] Witkin, A. P., Tenenbaum, J. M., What Is Perceptual Organization For?,
Proceedings 8th IJCAI, ppl023-1026, 1983.

A Non-Wildcard Search Algorithm
// Non-wildcard expansion variation on standard algorithm:
// expand tree by members of valid_pairs (not by data levels),
// subject to not reusing data features,
searchtree(treesofar, valid_pairs)
{ if empty(valid_pairs) return fail

trylist = valid_pairs
do {

if can never get enough return fail
extension = head(trylist)
trylist = tail(trylist)
if data feature in extension already appears in treesofar

then skip this extension
if compatible(extension, treesofar)
{ if enough matches return success

if success(searchtree(append(treesofar,extension),
trylist)), then return success}

} while non-empty(trylist)
return fail}

// test for compatibility of new pairing with rest of pairings:
boolean compatible(new_pair, treesofar)
{ // check pairwise with previously filled slots of this hyp

for each pair in treesofar
if not compatible2(pair, new_pair) then return false

return true}


