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Abstract

This paper addresses the problem of recovering accurate 3D geometry
from a 4 degree of freedom stereo robot head. We argue that successful
implementation of stereo vision in a real world application will require
a self tuning system. This paper describes a statistical framework for
the combination of many sources of information for the calibration of a
stereo camera system which would allow continual recalibration during
normal use of the cameras. The calibration is maintained using modules
at three levels: fixed verge, variable verge and pan/tilt/verge calibra-
tion. Together these modules provide the means to fuse data obtained at
various head positions into a single coordinate frame.

1 Introduction
Computer vision systems which can deliver an accurate estimate of 3D ge-
ometry from stereo are now relatively commonplace in the computer vision
literature. Our own stereo vision system TINA has been demonstrated to have
useful 3D vision capabilities [5]. The vision system, which makes use of edge
based representation and stereo matching, relies upon calibration in both the
determination of epi-polars for the matching process and the calculation of 3D
position from disparity. Implementing these algorithms on a moveable head rig
poses a real problem of multiple parameter calibration.

Calibration has generally been achieved by a procedure whereby the cali-
bration parameters are recovered once from a known stimulus with no concern
for updating this calibration in future by any other means other than total
replacement. In a practical vision system which is to be in continual use, such
one-off calibration methods are inadequate. A moving camera system would
have to 'look' at a calibration stimulus every time it was moved. For a practi-
cal stereo vision system, recalibration must be an integrated activity working
with data available during normal use [9]. In addition, we cannot expect there
to be sufficient information at any one time to obtain a completely accurate
calibration of the system, so we require a method of combining data collected
over a period of time into a consistent calibration. Ideally this method would
also allow the integration of information from different image sources and can
be described as "online calibration". The idea is not new, other authors have
suggested mathematical frameworks for self calibrating systems [2]. Here we de-
scribe our own practical framework and a three stage calibration system which
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maintains the full head calibration (figure 1) and demonstrate its use with hand
eye coordination of our head and a robot arm.
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Figure 1. Head Calibration modules.

2 A Unified Mathematical Framework
A method is required for data combination, and this can be achieved via stan-
dard statistical methods by minimising a least-squares error measure (xt2)'-

Xt2 = (o - at)
TCa-\a - at)

with respect to the parameters at , where Xt *s a summed error criterion
comprising a constraint term on the parameters a derived from previous data
(which can be called a regularisation term) and a term for the current set of
data yi. Ca is the covariance matrix for the measurement vector a and the t
subscripts denotes the iteration. Wi is the data measurement variance. This
last term involves the data model <j>, if this is linear then the model parameters
can be estimated using a Kalman filter. If it is approximately linear then it
can be linearised locally and solved using the Extended Kalman Filter (EKF).
Both of these approaches are common in the computer vision literature [1].

The EKF uses the assumption that if <j> is approximately linear then the x2

can be modeled as a quadratic around the current estimate at the minimum
2

Xo
2:
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where 6a is the difference vector from the current estimate to the chosen
point in calibration space. If this is true then the combined estimate of the
total x2 from all combined data is also valid and should give the same result as
if all the data had been minimised simultaneously. If however, the model is very
non-linear the EKF may have to be iterated several times and depending on
the degree of linearity this process may be unstable. Alternatively, the optimal
combined estimate can be obtained directly by finding the parameters that
minimise \t2 • This is the method that we have adopted on the basis of increased
robustness. We minimise the function iteratively using the downhill simplex
method [4]. This gives the maximum amount of freedom for model parameter
change and the inclusion of robust statistical measures. We limit the maximum
contribution to the error score from each data point during minimisation, this
effectively protects against outliers. Parameter tracking can be achieved by
limiting the size of the covariance matrix so that new data takes preference
over old [9].

To obtain a covariance matrix we must be minimising a \2 variable, this
rules out a lot of calibration algorithms as candidates for optimal combination.
Generally we cannot combine results unless the method takes correct account
of the errors in the measurement system. In a stereo camera system we believe
that the errors are mainly due to sampling noise and pixelation, and therefore
best modelled in the image plane. The elements of the inverse covariance matrix
are defined in terms of the Hessian by

2dendem

which when close to the minimum of the function can be approximated
using the Jacobian

We estimate the derivatives using numerical methods for purposes of model
parameterisation flexibility. Any method that minimises an error metric in the
image plane can be formulated as a x2 minimisation and combined within this
statistical framework.

2.1 Fixed Stereo Camera Calibration

Obtaining a reliable stereo camera calibration is a particularly difficult task.
A full camera model comprises both intrinsic parameters / (internal to the
cameras) and extrinsic parameters e

(relative camera transformation specification). These two sets of parame-
ters are often strongly correlated. For example the rotation of the camera and
the translation of the centre of image co-ordinates will have virtually identical
effects on our error criterion. The same is also the case for translation of the
camera and changing the focal length. Correlations between parameters make
it impossible to determine an isolated subset of the parameters properly with-
out accurate prior knowledge of the remaining parameters. These correlations
produce extended minima in the error surface so that many dissimilar sets of
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calibration parameters may be equally valid, making statistical combination
difficult.

The EKF and related methods (including ours), which take into account the
covariance of the calibration parameters, can overcome these problems. New
data is incorporated close to the current estimate where the covariance for the
previous set of data is most reliable.

We can identify two sources of calibration data: known 3D measurements
(for example the movement of a robot arm or known 3D objects) and epi-polar
aJignment of matched stereo correspondences. Both of these sources can be
used to construct a \2 measured in the image plane. For calibration from 3D
data it is assumed that data is provided on an accurately measured 3D object
and that features on this object have been identified in the image planes of
either camera. Such data can be obtained in a working system from the known
motion of a robot arm or accurately known rigid 3D objects. A x2 is formed
as the difference between the observed position of the image features and the
predicted position, given the current estimates of the model. As the object
is measured in an arbitrary co-ordinate frame the parameters describing the
absolute transformation are redundant and only those relevant to the stereo
camera system s are required. For calibrating from image correspondences the
X2 is formulated following the numerical method of Trivedi [7]. The method can
accommodate correspondance data either from matched epi-polar tangencies [3]
or matched corners [8].

Thus for combination of calibration from these results with data from each
source the stereo camera inverse covariance matrix C 5

- 1 is needed and the total
combination cost function is given by :

Once this is minimised the stereo camera covariance matrix C,"1 must be
updated with the inclusion of all new data [10].

2.2 Variable Verge Stereo Camera Calibration

A full parametric model of the vergence camera system would be capable of
describing the whole space of possible configurations of the left right verge
system. However, a global model is only applicable to a well engineered robot
head. Moreover, this method of calibration would have to be developed almost
independently of any other solutions for the fixed camera geometry so that we
cannot build on previous methods.

Alternatively, we might adopt a look up table solution, this has the advan-
tage that we can use the previous methods for calibrating fixed head config-
urations to fill the entries of the table. For a head like our own which has a
movement resolution of 8 minutes of arc over a range of 60 degrees for two
cameras there are 202500 possible configurations of which about 44300 may be
regarded as viable stereo vision configurations (figure 2).

This degree of freedom we call an "asymmetric vergence" control paradigm.
A simpler moveable head system is where the fixation of an object requires
pan tilt and verge angles so that the left and right verge motors have equal
and opposite motor position control parameters. This we call a "symmetric
vergence" control paradigm. With this method however, the full number of
possible configurations is 112. We may safely assume that each configuration
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of the head would require an independent estimate of the extrinsic stereo camera
parameters. Such independent entries for each configuration of the head would
need extensive modification each time the system was disturbed.

G — symmetric verge

Tfe l̂ asymmetric verge

Figure 2. Defining interpolative lines and planes for symmetric and
asymmetric calibration interpolation.

What we require is a compromise which combines the speed of training of
global methods with the increased generality of the look-up table. The solu-
tion we have adopted is one which allows us to specify a local model that can
be applied over a large number of possible verge configurations. We make the
assumption that between two fixed vergence configurations the stereo camera
parameters can be linearly interpolated on the basis of the motor control pa-
rameters. In our camera model the relative stereo camera geometry e is stored
as a quaternion and translation [9].

Linear interpolation would imply that the net effect of a change in verge
rotation for both cameras about their verge axes can be approximated by a
rotation about one axis and that small rotations about this axis are approxi-
mately linear in the left and right verge position control parameters $ and \P.
The range over which these assumptions are valid have been tested by simula-
tion and it was found that the approximation will not measurably degrade 3D
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geometry in our system over a rotation range of 0.2 radians (Figure 3).
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Figure 3. Simulated estimate of the error on interpolated vergence rotation
for symmetric and asymmetric control paradigms.

Rotation errors are approximately quadratic and a maximum at the cen-
tre of the interpolated region. Thus, for the symmetric verge paradigm the
whole useful range of the system can be defined with two calibration configu-
rations defining the endpoints of the interpolation line eie2 at <&i and $2- The
interpolated estimate of the relative camera geometry is given by

e =;

with

Thus we have two stored calibrations as opposed to the 112 entries needed
for a look-up table.

Similarly, for the asymmetric vergence paradigm, a large part of the useful
range of the cameras can be defined using only three calibration configurations
e\, e2 and e3, which define an interpolative plane in configuration space.

with

02 =
- ( * -
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By comparison, for verge rotations up to 0.2 radians this same region would
require 3700 separate calibration entries in a standard look up table. More
of the configuration space can be calibrated by defining similar three-point
regions and calibrating these separately. We do not advocate extrapolation of
the calibration outside the defined interpolation triangle.

The full symmetric and asymetric models g including intrinsic parameters
/; and fr can be written as

9 = (fl,ei,e2,fr)
T

or

9 = (fi,ei,e2,e3,fr)
T

The current estimate of the calibration can be written as

Our fixed camera calibration methods provide an estimate of the intrinsic
and extrinsic camera parameters s and a full covariance matrix Cj"1. These
are combined into the model g using standard statistical methods as follows

gt = gt-i + Cgt(Vg(s))TC;\s - s^)

It is vital for the stability of these methods that estimates of parameters s
from new data is constrained with estimates of these parameters from previous
data s. This constraint must then be removed from the combined estimate of
g to prevent double counting of data [10].

2.3 Calibration of the Pan/Tilt/Verge rotation axes

The above methods provide an interpolative estimate of the relative camera
geometry and the intrinsic camera parameters for a restricted range of verge
configurations. This can be used to provide estimates in 3D of the location of
any observed stereo correspondance in the left camera coordinate system. We
now need to be able to relate these coordinate frames for any configuration
of the head. In practice this requires the determination of the translations
between the pan tilt and left verge rotation axes and rotation scale factors. We
call this set of of parameters the head calibration parameters j . In practice only
the parameters defining the rotation scale factors and transformation of the left
camera into the left verge co-ordinate frame require calibration. The remaining
transformation parameters can be determined by direct measurement.

We have implemented two methods for achieving this, the first again uses
the robot and minimises error in the back projected position in the left image
plane of the robot arm subject to j . The second uses the estimate of the verge
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calibration and a stereo/temporal corner matcher [8] to provide estimates of
temporally matched 3D image points in the left camera coordinate system.
A x2 is then formed from the summed squared error between the first point
and the second point transformed back into the first head configuration in
scaled disparity space (x/Az, y/z, I/\/2.z) where A is the aspect ratio of the
cameras and / the interoccular separation. Disparity space errors provide a
scaled approximation to the image plane error but are much easier to compute
[6].

3 Results and Conclusions

The data combination method for fixed camera geometry was tested using data
from robot motion, matched stereo corner correspondances and a calibration
tile. The accuracy of estimated epipolar geometry was found to improve with
the inclusion of new data as expected (figure 4). This system will allow the
online recalibration of a fixed verge stereo camera system.
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Figure 4. Epi-polar errors on test data after combination of data from
(a) robot position,
(b) matched stereo correpondances and
(c) a calibration tiles.

The variable verge interpolation scheme was initialised with three fixed verge
calibrations at the points (0,-30), (30,0) and (30,-30) in verge motor configura-
tion space (one motor count = 2.5 mRadian). This was tested by interpolating
the camera geometry at the point (25,-25), the epi-polar accuracy was found to
be consistent with a fixed verge calibration at the same point (figure 5). This
system supports online recalibration of a variable verge stereo camera system
using data from the fixed verge calibration method over a relatively large range
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Figure 5. Epi-polar errors for interpolated camera calibration at (25,-25).

The pan/tilt and left verge parameters were obtained by calibrating on the
back projected robot motion and matched static 3D points. The resulting full
camera model was tested on unseen robot positions (figure 6). Outliers can be
seen which are generated by several causes including stereo mis-matching and
undershoot of the robot arm. This parameterisation of the system now permits
3D data from different head configurations to be combined into one coordinate
frame and computation of head configurations for fixation of 3D world points
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Figure 6. Back projected image plane errors after calibration of the full 4

DOF head system.

These results show that accurate calibration of a 4 DOF stereo head is
feasible using a robust statistical framework which will permit online recali-
bration. Methods in stereo computer vision like those in our own TINA vision
system requiring accurate stereo camera calibration can be supported with such
a system.
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