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1 Introduction

The ability to monitor a visual scene containing animals and to draw intelligent
conclusions automatically would have a significant impact on agricultural practice.
For example, if the gait of an animal could be objectively measured, early detection
of lameness would be possible. If the motion of a sow and piglets could be
analysed, a stockman could be alerted if the piglets were in danger of being
crushed or were not feeding properly.

This work forms part of a programme to estimate the weight and hence growth
rate of animals from images. In this case, accurate boundaries are required.
Animals are often found in visual situations where the background is cluttered and
cannot easily be controlled. Also their own surface is often marked either naturally
or by contamination from their environment. Segmentation techniques based on
thresholding are usually not successful but it may be possible to exploit the fact that
animals move whereas the background is stationary.

2 Related work

Methods which seek to segment objects using their motion usually rely on an
estimate of the object motion itself. Motion estimates for parts of the image can
be gained by correlating between small windows in a pair from an image sequence
[1]. Correlation can be done in the spatial domain where a window is fixed in
position in one image and moved in the other until some measure of
correspondence is maximised [2]. Alternatively, the process can be done in the
frequency domain using the Fourier transform which is generally faster and suited
to modern special purpose hardware. There is a basic problem in using any
technique in which a finite sized window is used -estimates near the boundary of
the moving object (the very places which require accurate location in this work)
will be poor.

In principle this problem could be overcome by using differential techniques for
motion measurement (e.g. [3]). However, these techniques are affected greatly by
noise problems. Also it can be shown that no information can be obtained on
the motion component parallel to an edge feature unless extra assumptions are
made concerning the form of motion.

Murray et al. [4] exploit the fact that functions of the image intensity and its
changes can be chosen which vary rapidly across object boundaries. However, the
method still depends on using a finite sized operator to detect peaks in these
functions. Rivero and Bouthemy [5] also use differential methods for motion
estimation and collect together regions having similar motions. The size of these
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regions are smaller near to object boundaries but still of a sufficient size to give a
very "blocky" appearance to the edge.

In the work reported here a correlation technique is used to avoid noisy motion
estimates. Poor estimates near to boundaries are avoided by using a motion model
derived with a robust estimator. An accurate and reasonably complete boundary
is then built up by integration of successive estimates over a motion sequence.

3 Outline of method

The method starts by finding the area of significant change in an image pair by
differencing and thresholding. Such an image pair and the changed area is shown
in Fig. 3.1. The changed area contains components from:

a) where background has been uncovered by the object,
b) where background has been covered up,
c) where object pixels have been replaced by other object pixels at a

significantly different grey level,
d) noise giving rise to isolated pixels.

These changes occur over an area generally larger than the moving object and
the changed area contains many missing pixels where a grey level change is within
the threshold. Some of these missing pixels can be filled in by a number of dilation
operations followed by an equal number of erosions.

As pointed out by Ostermann [6] the boundary of the moving object can be
found by combining the changed area with a knowledge of the object movement
as follows:

Calculate the motion vector for each point in the changed area (see below).
Place the tail of the vector on each pixel in the changed area. If the head is within
the changed area (i.e. the head is also on a changed pixel), the head point is on the
moving object. Note that if the motion vector is other than zero, isolated noise
points will be removed provided there is no second noise point at the head of the
vector.

As the changed area is an incomplete representation of the areas where motion
has occurred, this procedure gives an equally incomplete version of the moving
object (Fig. 1).

In order to give a more complete rendition of the object the method is applied
to a sequence of images. As the method proceeds, an "object mask" is maintained
which is a binary image, grey level 255 signifies that particular pixel is on the
moving object, level 0 signifies background. As each new image pair is analysed,
the existing object mask is "warped" by moving each pixel by the calculated motion
vector. Then new points are added to form the new object mask. Thus the object
mask tracks the object through the image sequence and becomes more complete
in the process. The underlying assumption is that object pixels which do not
change significantly at any one iteration of the method (and thus do not form part
of the changed area) will change significantly at some other stage in the sequence.
To recover the moving object from any image in the sequence the object mask is
simply combined with the image by a logical AND.
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4 Calculation of motion vectors

The early stages of motion measurement follow the work reported by Burt et al.
[1]. Motion vectors are measured by correlation between small windows in the
image pair. A fast Fourier transform is used to perform the correlation using a
window size of eight pixels square. A coarse to fine procedure limits the motion
at each level of the procedure to a few pixels. A pyramid of images is formed ,
each image being half the resolution of its parent. Some care must be taken when
reducing resolution in order to avoid aliaising of frequencies which are present in
the finer resolution image but above the Nyquist frequency at the lower resolution.
The author convolved each image in the pyramid with a filter having three zeros
at frequencies at and above the Nyquist frequency before sampling the filtered
image (Appendix).

The sequence analysis depends on an accurate knowledge of the motion of each
part of the object. In order to locate boundaries accurately (a major objective of
this work) the information must be available at the boundaries of the object.
However, these areas are also the points where correlations will be poor and
motion estimates inaccurate. To avoid this problem, a motion model is used.

Following Burt et al. [1] the variation of motion across the object is explained
by assuming the object to be a rigid body moving with six degrees of freedom in
three dimensions. Thus a model for the coherent motion of the object can be
obtained by fitting two functions, one each to the x and y components of the
motion, of the form:

vx = ax + by + c (1)
vy = dx + ey + f (2)

Because of boundary effects, the raw motion data will contain a significant
number of outliers. Three methods have been used to combat this problem.

1 After dilating and eroding the changed area (previous section) the area is
further eroded to remove from the boundary a width equal to approximately
half the window size used for correlation. This new area becomes the basis for
raw motion estimates although the original area is retained to calculate the
object mask.

2 The cross correlation for each motion estimate is normalised by dividing by

where g is the grey level in one window, f is the grey level in the other
window at maximum correspondence and the sums are over the window areas
[2]. This gives a value between 0.0 and 1.0. An average value is calculated
over all the points in the changed area and only motions for those points
above the average are passed on to the next stage.

A robust estimator is used to identify the parameters in Eqns. 1 and 2. In a
normal least squares estimator it can be shown that each point is weighted
according to its distance from the fitted plane. In the estimator used here [7],
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a sinusoidal weighting function is used which peaks at a difference of 1 unit
and returns to zero at 2 units. Thus points greater than 2 units from the fitted
plane are ignored completely. The procedure results in a non-linear
minimisation problem which has been solved here using the Simplex method
[7]. The starting values for the estimated parameters are gained from a least
squares fit.

5 Results

The method was used on two types of images. Firstly a random pattern of grey
levels between 0 and 255 in a window 64 pixels by 48 which was moved against a
second random pattern as background. A random number generator was used to
produce displacements between ±9 pixels horizontally and ± 6 pixels vertically.
For this test the window motion was confined to a translation in the image plane
of a whole number of pixels in each direction.

Table 1 shows the number of edge pixels, object pixels, and background pixels
found in two cases; firstly where the changed area was not modified by dilation and
erosion and secondly where two stages of each were used. The images were
numbered from 0 to 7 and sequential pairs were used for analysis.

Table I. Performance of algorithm on a random pattern

image
pair

0/1

1/2

2/3

3/4

4/5

5/6

6/7

displacement

-7,-2

9,-2

5,5

8,0

4,-6

1,-6

7,6

dilation/erosion = 0

edge
pixels

172

202

215

219

220

220

220

object
pixels

2375

2875

3021

3056

3070

3071

3072

back-
ground
pixels

0

0

0

0

0

0

0

dilation/erosion = 2

edge
pixels

220

220

220

220

220

220

220

object
pixels

3072

3072

3072

3072

3072

3072

3072

back-
ground
pixels

0

0

0

0

0

0

0

Total no. of edge pixels = 220; total no. of object pixels = 3072

It should be noted that the problem is made easier by the fact that the warping
of the object mask is constrained to give an integer result. As the window was
moved by integer amounts, the rounding process removes errors providing they are
less than 0.5 pixels.
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Table I shows that the algorithm yields the moving window exactly, correctly
finding all object pixels (including those on the edge) and no background pixels.
With no dilation/erosion of the changed region seven iterations of the algorithm
are required. With two stages of dilation and erosion the algorithm finds the
window on the first iteration.

In the second set of tests the trunk and head of a person was used as the target
object. Two situations were chosen - where the person was wearing patterned
clothing against a cluttered background, and where relatively plain clothing was
worn against a plain background.

Eight images were used in each sequence numbered zero to seven. Figs. 2 and
3 show image number 7 along with results from image pairs 0/1,3/4, and 6/7 from
each of the two situations. In each case, the movements were a combination of
rotations and translations in the dimensions. Some care was taken to ensure that
the head/body combination moved as a rigid body i.e. articulation at the neck was
kept to a minimum. This restriction was imposed, for this stage of the work, to
avoid contravening of the basic assumptions of the method. Note that a second
assumption, that the body is planar, was regularly violated. For dilations of the
changed area were used followed by four erosions when finding object pixels from
motion vectors.

Fig. 2 shows the gradual improvement of the object segmentation throughout
a sequence. With the exception of a few isolated background areas, the only
significant addition to the object is a small area to the left hand side if the neck.
A small part of the boundary on the left shoulder has become slightly ragged.
Some areas of the body, notably the forehead and below the neck have been
missed. This is due to insufficient texture in these areas giving regions with no
significant change in grey level with movement. These areas could be filled in by
noting the fact that there are no holes in the real object. As the cause of the
problem is lack of texture, a reasonable estimate of the grey level of the holes
could be made by averaging the grey levels over the corresponding areas in the
whole sequence. However, the performance on the task in hand, finding an
accurate boundary, is good. Note that the cracks in the objects are caused by using
integer arithmetic in the warping process to produce the object mask.

Where there is less texture in the image (Fig. 3) the performance is worse, as
expected. However, with the exception of the area to the right of the neck, the
segmentation of the head is good. The ragged boundary to the left and right of the
body could possibly be improved by smoothing the boundary direction. As with
Fig. 2 the holes (this time much larger) on the body could possibly be filled in with
an average of grey levels over the sequence.

6 Conclusions

A method has been proposed which can derive an accurate boundary of an object
from an image sequence. The method depends on a number of assumptions, in
particular that the motion is due to a planar object which has sufficient texture on
its surface.

Tests on random dot patterns which translate an integral number of pixels give
perfect results when there is sufficient grey level texture but, as expected, poorer
results on more uniformly shaded objects.
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In order to use the method on more general animal images, a technique will
need to be developed to handle objects which cannot be represented as rigid
bodies. For instance, those that deform or articulate. Future work will address this
problem.
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APPENDIX

Anti-alias filter for image sampling.

If g(m,n) is the grey level of an image at point m,n then the image can be
represented in the frequency domain as G(u,v) where G is the two dimensional
discrete Fourier transform:

G(u,v) = ^T g{m,n) exp (-2ni (um+vn) /N)
m, n

N is the image size and u and v complex frequency components.

Consider an image at level I in the pyramid of decreasing resolution. This is
derived by sampling an image at level t-1 at every other pixel. The Nyquist
frequency at level H-l is n radians/pixel and so that at level ^is n/2 radians pixel.
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Note that the pixel dimension for both levels in this explanation is that for level t-
1. Hence, in order to avoid aliasing, all frequencies above u= v= n/2 should be
removed in the image at level Q-l before it is sampled. This cannot be achieved
exactly but an approximation can be made by convolving three masks

11* 1 1 1 * 1111
11 111 1111

111 1111
1111

to give a filter mask

1 3 5 6 5 3 1

3 9 15 18 15 9 3

5 15 25 30 25 15 5

6 18 30 36 30 18 6

5 15 25 30 25 15 5

3 9 15 18 15 9 3

1 3 5 6 5 3 1

The 4 x 4 filter has a zero at u/2, the 3 x 3 at 2n/3 and the 2 x 2 at K, and so the
composite filter has zeros at these three frequencies.

Note that the 7 x 7 filter can be implemented by convolving the image firstly with
the 1 x 7 filter formed by the first row, then with the 7x1 filter formed by the first
column. This procedure speeds up the implementation significantly.
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Fig. 1

Top, image pair consisting of an area torn from a page of text moving on
a similarly textured background. Bottom left, changed region. Bottom
right, incomplete rendition of object.
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Fig. 2

Results for relatively patterned object on a cluttered background. Top left,
image sequence No.7. Top right, bottom left, bottom right, improvements
of object rendition.
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Fig. 3

Results for relatively plain object on plain background. Top left, image
sequence No.7. Top right, bottom left, bottom right, improvement of
object rendition.


