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Abstract

In this paper we present the Delaunay/Voronoi selection graph (DVSG), an approach
to the representation of the shape of 2-D objects which does not require a complete
segmentation, merely a pattern of dots which are believed to lie on the edges of
objects. The technique produces both a skeleton and boundary representation and, with
subsequent processing, generates a hierarchical description of the topology of
individual objects. We compare the DVSG to other methods used for obtaining
information from dot-patterns, and show how this technique can be extended to 3-D.

1 Introduction

We require a method of representing the shapes of objects following an initial
segmentation of an image. Since segmentation techniques often fail to produce a
complete segmentation, we chose to treat candidate edge points as individual dots
and compute both a skeleton and boundary representation for the perceived
objects within the dot pattern. The method of shape representation we have
developed is based on the Delaunay triangulation and its dual the Voronoi diagram
of a set of points [1]. We refer to the method as the Delaunay/Voronoi selection
graph (DVSG). Subsequent processing produces a hierarchical representation both
of the boundary and the skeleton of objects. The hierarchical structure reduces its
sensitivity to small changes along the object boundary and also facilitates coarse to
fine matching of image features to model entities.

Many approaches to shape representation have been proposed, and more
extensive reviews can be found in references [2,3]. Boundary representations of the
shape of objects such as those described in references [4,5] tend to be sensitive to
small changes along the object boundaries, and hierarchical representation is often
difficult, as is the sub-division of objects into their sub-parts. The hierarchical
approach of the cui'vatuie primal sketch [6] overcomes some of the probitaiis of
boundary representations, but the use of multiple Gaussian scales may cause
problems especially when primitives are close together.

Skeleton representations such as proposed in [5,7] allow objects to be
represented in terms of the relationships between their sub-parts. Spurious
skeleton branches can be generated by small protrusions on the object boundary.
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Nackman & Pizer [8] propose an approach which overcomes the problems of these
spurious branches by generating the skeleton of an object at multiple Gaussian
scales, and Arcelli [9] proposes a hierarchy of skeletons in terms of the object's
boundary curvature.

The problem of grouping together dots to form perceptual groups has been
attempted by a number of authors. Fairfield [10,11], like ourselves, is concerned
with both the detection of the boundary of objects from dots, and also the
segmenting of these objects into their sub-parts. He uses the Voronoi diagram to
detect areas of internal concavity and replacing Voronoi diagram sides with the
corresponding Delaunay triangulation side to produce both the object boundary
and sub-parts. This work is dependent on a user defined threshold and does not
differentiate between object boundaries and the sub-part boundaries. Ogniewicz
et. al. [12] use the Voronoi diagram of a set of points to produce a medial axis
description of objects. This method requires that the points making up the
boundary have known connectivity, and a threshold is used to prune the skeleton
description. Ahuja et. al. [13,14] propose the use of the Voronoi diagram and the
properties of the individual Voronoi cells to classify points as boundary points,
interior points, isolated points, or points on a curve.

Perceptual grouping algorithms based on the Delaunay Triangulation (DT)
have been proposed by several other authors [15,16]. Three subgraphs of the DT
which are of particular interest are: the Gabriel Graph (GG) [17]; the Relative
Neighbourhood Graph (RNG) [18]; the Minimum Spanning Tree (MST). These
graphs are shown in Figure 3 and defined below.

The Gabriel Graph is defined as follows: any edge <u,v> of the DT is an
edge of the GG iff the circle with <u,v> as diameter contains no points in its
interior. The Relative Neighbourhood Graph is defined as follows: any edge <u,v>
of the DT is an edge of the RNG iff the lune formed by the intersection of the
circles centred at u and v with radius | <u,v> | contains no points in its interior.
The Minimum Spanning Tree is the tree of minimal total length which visits every
point. Section 3 compares these three graphs to the graph generated by our
technique.

Our method, the DVSG, does not require connected boundaries as input,
merely a set of points (dots) which are believed to be edge points of objects. It
produces distinct objects from these potential edge points, and concurrently
generates both a skeleton and boundary representation of the shape of these
objects.

2 Methods

2.1 Selecting skeleton and boundary sections.

Input to our technique comes in the form of disconnected dots. Each dot is
assumed to lie on the edge of an unspecified object(s). We assume that the sides
in the Delaunay triangulation provide a superset of the boundaries of the perceived
objects within the dot-pattern. Likewise, we assume that the sides of the Voronoi
diagram form a superset of the skeletons of the perceived objects.

In our approach, the problem of boundary and skeleton definition is
simplified to selecting from the Voronoi diagram those sides that form the object
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skeleton, and selecting from the Delaunay triangulation those sides that form the
object boundary. An example is shown in figure 1. We observe that when a
Delaunay side is perceived to lie on the boundary (e.g. AB in figure lb), the
Voronoi side corresponding to this Delaunay side is NOT perceived to be on the
skeleton (e.g. CD in figure lb). Further, when a Voronoi side is perceived to lie
on the skeleton, the corresponding Delaunay side is NOT perceived to lie on the
boundary. The problem is thus further refined into a simple choice between a
Delaunay side and its corresponding Voronoi side. We make this choice by keeping
the shorter of the Delaunay side or its associated Voronoi side. If the Delaunay
side is shorter then this is added to the list of boundary sections; if on the other
hand the Voronoi side is shorter, this is added to the list of skeleton sections. This
can be viewed as deciding whether any two points connected by the Delaunay
triangulation are to be regarded as adjacent points on the same boundary, in which
case we choose to keep the Delaunay side connecting them (e.g. AB in figure lb);
or whether they are lying opposite each other and separated by a skeleton, in
which case we choose to keep the associated Voronoi section as part of the
skeleton (e.g. CE in figure lb). We call the graph resulting from this selection
process the Delaunay(Voronoi Selection Graph (DVSG). Figure 2a shows an
example image, and figure 2b shows a series of points outlining the major features
within the image. Figure 2c shows the result of the above selection criterion for the
points in figure 2b (skeleton sections are shown as dashed lines; boundary sections
as solid lines).

Figure 1 a) sample input points; b) Delaunay triangulation (solid) and Voronoi
Diagram (dashed) c) result of the selection process.

2.2 Defining objects

Since no prior knowledge about the connectivity between edge points is necessarily
provided, and there is no information about the number of objects present, it is
necessary to define the objects that have been created following the creation of the
DVSG. Following the initial selection of boundary and skeleton sections, sequences
of connected skeleton sections (which may posses multiple branches) exist. These
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connected skeleton sections are surrounded by boundary sections. We define an
object as a sequence of connected skeleton branches and the surrounding boundary
sections. Each pair of points which was connected in the original Delaunay
triangulation is now classed as either defining a boundary side or a skeleton
section, and is also associated with one object (if the pair defines a skeleton
section) or one or two objects (if the pair defines a boundary side). Figure 2d
shows the computed boundary for the largest object in figure 2c.

2.3 Splitting objects into sub-parts

Each branching object is next segmented into its sub-parts. This is accomplished
in the following way. All skeleton branches are three way and occur where all three
Voronoi sides corresponding to one Delaunay triangle were shorter than their
respective triangle sides. Each branch point in an object's skeleton is considered
as either: 1) the meeting point of a small part of the object with the larger, main body
of the object. The smaller part is considered as less important than the main body
and is broken off as a sub-part; 2) the meeting point of two smaller sections with the
main body of the object. Both of the smaller sections are then broken off as sub-
parts.

Associated with each branch we define an area and a direction. The area
is the sum of the areas of all of the triangles along that branch. The direction is the
direction of the line from the branch point through the centre of gravity of the
mid-points of the skeleton sections making up that branch. The centre of gravity
is calculated from the mid-points of each Voronoi section in the skeleton of that
branch, and each mid-point is weighted by the length of its skeleton section. The
allows longer skeleton sections to have more effect on the direction of the branch
than smaller ones.

For 1) above to be chosen, the branch with the smallest area must be
significantly different from the branch with the second smallest area. This measure
of significance is defined by the ratio of the two areas. Branch "a" is significantly
smaller than branch "b" if area(a)/area(b) < 0.2. The branch with the smallest area
is then broken off. Failing this, the sine of the difference between the direction of
the smallest and the largest branch is compared to the sine of difference between
the direction of the second smallest branch and the largest branch. The sine is
taken as this gives us a large value if the directions are similar and a small value
if the directions are dissimilar. If the ratio of the smaller of these two values over
the larger falls below 0.2 we assume that one branch has a direction significantly
different to that of the largest branch, and we break off the branch with a direction
most different to that of the largest branch.

If neither of the above two conditions are met we assume that 2) above is
true, and we break off both of the smaller branches.

When a branch is classified as belonging to a sub-part, its Voronoi section
emanating from the branch is flagged as a cut stem. All of the skeleton and
boundary sections of that sub-part are then labelled accordingly. The Delaunay
sides corresponding to the skeleton cut stems form the virtual boundaries between
sub-parts. This is an example of how the duality between the Voronoi diagram and
the Delaunay triangulation makes it very easy to add/remove sections of an object
by simply toggling a triangle side. Figure 2e shows the part boundaries (dotted
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lines) for the object of figure 2d.

2.4 Generating the intra object hierarchy

The sub-parts of each object are next represented hierarchically as a coarse-to-fine
description. For each object, the sub-parts are ordered in terms of decreasing area.
A level in the hierarchy is placed wherever there is a large change in area between
successive sub-parts in this ordered list. Currently this is accomplished by looking
for maxima in the derivative of the list. By successively adding the different levels
of the hierarchy to the object description a more detailed version of the object can
be obtained. Unlike many other approaches to hierarchial, coarse-to-fine
descriptions, the position of the boundaries does not change as we go from coarse
to fine; it is simply the case that some virtual boundaries are replaced either by
virtual boundaries at a more detailed level of description, or by the final boundary
of the object. Figure 2f-h show the different levels of the hierarchy for the object
of figure 2d. The finest detail is shown in figure 2h.

Figure 2 a) Original image; b) input points; c) Result of selection; d) Major
object; e) parts of major object; f-h) hierarchy for major object.
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Comparison with other subgraphs of the Delaunay
triangulation

This section compares the DVSG with the GG, RNG and MST (defined in section
1). Figure 3 shows an example of these graphs. Several points can be made from
comparing these graphs:

1. It is well known that the relation DT => GG 3 RNG => MST holds [19].
Inspection of figure 3>shows that the DVSG does not fit into this sequence
and in fact no inclusion relationship exists between the DVSG and the GG,
RNG or MST.

2. The GG, RNG and MST are necessarily connected whilst the DVSG is not.
3. The DVSG always contains the convex hull whilst the GG, RNG and MST

do not.
This lack of relation between the DVSG and the GG, RNG and MST can

be understood by appreciating that the DVSG was developed with the aim of
connecting points into coherent boundaries, whereas the other graphs have had
there main application in clustering points into dense groups.

RNG

DVSG

MST
Figure 3 Comparison of the DVSG with subgraphs of the DT.
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4 Extension to 3-D

The 2-D Delaunay triangulation has a 3-D equivalent. In 3-D points are connected
into tetrahedra (c.f. triangles in 2-D). Each tetrahedron has no points in the
interior of its circumsphere. The Voronoi diagram is also extendable to 3-D. Lines
connecting the circumsphere centres of adjacent tetrahedra form Voronoi sides.
Each Voronoi cell is the volume around a point closer to that point than any other.

Each face of a Delaunay tetrahedron has associated with it one side from
the 3-D Voronoi diagram. Likewise, each face of the 3-D Voronoi diagram has
associated with it one side of a Delaunay tetrahedron.

As in the 2-D case, input points to the 3-D extension are assumed to be
potential edge points of 3-D objects.

Each face of a Delaunay tetrahedron is assumed to be a potential surface
facet of an object. The decision that needs to be made for every face is whether
it should be kept as a surface facet (when its points lie close to each other) or
whether it should be ignored and the corresponding Voronoi side kept as a 3-D
skeleton section. The method used here compares the absolute length of the
Voronoi side to the mean length of the three sides making up the Delaunay face
to which it corresponds. If the mean length of the Delaunay sides is less than the
Voronoi side then the face is retained as a surface facet. Otherwise the Voronoi
side is retained as a skeleton section.

The surface facets are individual Delaunay faces. Had the selection process
been based around individual Delaunay sides then it would have been possible to
generate a single one dimensional line as an individual surface. This does not seem
desirable, especially when assuming that the tetrahedron faces form a superset of
the object surface.

Skeletons can take a number of forms. At their simplest they can be single
points corresponding to the circumsphere centre of a tetrahedra which has had all
four of its faces retained as surface. More complex skeleton sections can be
created. These more complex sections comprise 1) skeleton lines which are
stretches of one dimensional polylines connecting the centres of circumspheres of
adjacent tetrahedra; 2) skeleton sheets which arise when all of the faces that a
particular Delaunay side is an edge of are retained as skeleton sections. Sheets
occur when the surface generated cannot be described by a one dimensional axis.
Figure 4a shows two tetrahedra formed from five points. Figure 4b shows the
creation of a skeleton line which replaces a single tetrahedron face. Figure 5a
shows four tetrahedra formed from six points. Figure 5b shows a skeleton sheet
formed by replacing all of the tetrahedron faces of which the Delaunay triangle
side AB is a part with Voronoi sections.

Objects are defined in the same way as for the 2-D case. They are
sequences of unbroken (and possibly branching) skeleton sections (normal and
sheets), and surrounding Delaunay faces.
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Figure 4 a) Two tetrahedra; b) tetrahedra and skeleton section (dashed).

Figure 5 a) four tetrahedra; b) tetrahedra and skeleton
sheet (solid)

5 Discussion

We construct a shape description of each object by decomposing the object into
a hierarchy of sub-parts. Our technique simultaneously extracts boundary and
skeleton representations of multiple objects from incomplete edge data. The input
candidate edge points require no connectivity information. Objects are defined
simultaneously in terms of their intact skeleton and boundary.

The connections between the points are generated through the algorithm
using local geometry only, but a simple modification allows the user to specify
partial connectivity or complete connectivity between points. Using information
about connectivity means that the technique can be used as a simple edge
connection algorithm [20] The purely local decision could be improved by
incorporating information about continuity into the algorithm.

The creation of the skeleton and boundary sections for objects is a separate
process from that of segmenting the objects into sub-parts and generating the
hierarchical representation. It should be noted that the technique proposed here
for generation of the skeleton and boundary sections can be used in conjunction
with any other algorithm for segmenting the skeleton; and also that the technique
proposed here for segmenting the skeleton could be used with any other method
for generating sub-parts and hierarchies.

The current method of segmenting individual objects into their sub-parts



27

usually appears to correspond well to subdivisions perceived by observers. This
implies that the criteria of size and direction are sensible ones to use. However
there are occasions where a different segmentation would be desirable. This is
usually where a skeleton has no branch but the boundary that it separates has a
significant narrowing. Use of the rate of change of the boundary-to-skeleton
distance could be included as an extra criterion when deciding where to segment
objects into sub-parts. We currently use an empirically determined threshold for
deciding whether to split an object into sub-parts. The threshold is a ratio of local
values (in the feature space) and is relatively insensitive to small changes in these
values. However, a more robust approach is required.

The use of minima in the derivative of the ordered list of sub-parts provides
a generally good hierarchical description. The major problem with the current
approach is that there are superfluous levels in the hierarchy towards the fine end
description, since the levels only use local criteria, and small perturbations in the
size of the sub-parts means there are a large number of minima in the first
differential. Alternative criteria for the hierarchical ordering of sub-parts could be
used such as large percentage change in the size of sub-parts.

Our technique provides an easy method for splitting one object into two or
combining two objects into one by simply changing the labelling of the Voronoi
section and its corresponding Delaunay section [21]. This splitting and merging
could be controlled by high-level knowledge in an attempt to match features in a
model to objects generated by the proposed shape description. We are currently
undertaking work in defining efficient metrics with which to match object
descriptions extracted from the input data to those held within the high level
model. In conjunction with this, we are extending our high level model[22] such
that all features have a shape representation in the same form as the one
described in this paper.

The technique can also be extended to 3-D. We have shown preliminary
results of an extension to 3-D using a proximity measure computed from the mean
length of the sides of a Delaunay tetrahedron face and the length of the associated
Voronoi side.
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