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Abstract

We present extensions to ideas we have described previously [1] for recognizing
instances of object classes. An object class is modelled by a boundary repre-
sentation, a set of model parameters, a set of constraints on the parameters,
and a set of feature constraint tables, which represent pairwise geometrical
constraints between features. A method for automatic generation of these ta-
bles from a boundary representation is described. An object’s pose and class
parameters are recovered by the algorithm using 3D edge fragments extracted
from a stereo pair of images.

1 Introduction

Our work is based on two important concepts to come from the vast amount of litera-
ture relating to the problem of object recognition from 3D (range) data; constrained
search of an interpretation tree and viewpoint independent, binary geometric mea-
surements between features [2].

When dealing with geometrically fixed objects, bounds on the geometric mea-
surements can be precomputed for each pair of model features and stored in feature
constraint tables or FCTs. However this useful data structure becomes much more
difficult to compute when we consider parameterized models because the bounds
are no longer simple numbers; they are functions of the parameters which are not
necessarily quantifiable until run-time. In section 2 we describe how symbolic FCTs
can be generated automatically for parameterized models. Section 3 gives details of
the edge constraints used and recent recognition results using stereo edge fragments.

2 Building FCTs automatically

An FCT entry is a pair of bounds on a pairwise geometric measurement involving
upper and lower bound functions f, and fj, respectively, of model features M; and
M; and a parameter vector p:

FCT:’j = [f;()"r.f,', A[js p)a fu(ﬁfa': JU_nP)]

For geometrically fixed objects, the value of p is known and so the FCT consists of
constant entries. We showed in [1] that the idea of a FCT can be extended for p
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unknown by allowing an entry to be a reference to an atomic expression instead of
a constant.

Since an FCT entry must be an atomic expression, the possibly large expressions
for f; and f, must be simplified. In some cases this requires just the application
of algebraic simplification rules, but in others we need to impose model constraints
on the process (e.g. the expression min(z,y) can only be simplified if we have a
constraint on the ordering of z and y). In the event that simplification cannot
produce an atomic expression, we add a new constraint, (newvar) = (expr), to the
model constraints. This guarantees that the function expressions can always be
simplified to atomic form.

In [1] simplification was performed by hand. This was both time consuming and
error prone. We noted then though, that Mathematica [3] is useful tool for our
problem; it is a system designed for symbolic computation and has in-built rules for
simplifying symbolic expressions and mechanisms for the addition of mathematical
relationships in the form of transformation and substitution rules. In the following
we illustrate its application to our problem, however space restrictions permit only
a simple example to give a flavour of the method.

Suppose that from the boundary representation (B-rep) of a model we generate
the bounds for a particular geometric measurement to be the expressions

a—b and c—b, (1)

(not necessarily in that order), and in addition we have model constraints a,b,c > 0
and @ = b+ c. These two constraints together imply a number of straightforward
but powerful relations. Firstly, a = b+ ¢ = a — b = ¢; we enforce this by converting
the constraint into a list of Mathematica substitutions: 2

{a-b—oc¢,—a+b— —ca-c—>b—-a+c— -bb+c—a,~b—c— —a}

Secondly, a = b+ cand a,b,c > 0 = a > b and a > ¢. Positivity of a parameter is
asserted by a function Pve which we define appropriately (e.g. one of the rules in its
definition is Pve[—z] := not Pve[z]). We also define rules for finding the maximum
of two expressions:

Mx[z,z] = =
Mx[0,z] := zif Pve[z] else 0
Mx[—z,—y] := —Mn[z,y]
Mx[-z,y] := y if Pve[z] and Pve[y]
Mx[a + z,a+y] = a+ Mx[z,y]
Mx[az,ay] := aMx|z,y]if Pve[a] else aMn][z, y]
Mx[z,a +y] := =z if Mz[z,y] == z and not Pve|a)
Mx[z,a +y] := y+aif Mz[z,y] ==y and Pve|d]

Mn, for minima, is defined similarly. Then the substitutions Mx[a,b] — a and
Mzx[a, c] — a enforce the ordering constraints above and simplified, ordered bounds
can be found for the expressions (1), above: [~b+ ¢, ¢|. The addition of a constraint
¢ = b+ d is sufficient to enable the reduction of the bounds to atomic form. Other
constraints are similarly enforced by substitution rules.

?For clarity, Mathematica expressions are given in a pseudo-code.
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3 Edge-based recognition

An edge segment is represented as d = (e, pm,!), where p,, is the midpoint of the
segment, | is the length and e is unit vector in the direction of the edge. In addition
we define p; = p,, + (I/2)e and p; = pm — (I/2)e, the endpoints of the segment. The
measurements between edges d; and d; used are:

edge-angle e;.e;

edge-dist if (e; and e; parallel) sgn(e;.e;)(v.v — (1u.r3_,-):‘}iT else v-‘::—:::j-i

edge-proj-1 pi,.[e; A fiacy] and pi;.[e; A 2ch]

e e

ejhe; ]
e5Meq

edge-proj-2 pj,.[e; A 2] and pj.[e: A A2
where v = p; — p;. is a vector between the edges. Image measurement edge-
dist is the perpendicular distance between the lines on which the fragments lie and
edge-proj gives upper and lower bounds on the distance of edge d; to the plane
containing d; and normal to €; A €;.

A sample object class parameterized by {w;, wq, w3, dy,d,,d3, d4, ds, ds, hy, ha, h3}
is depicted in figure 1 (this parameter set is not independent; e.g. it entails the

constraint w; = w; + w3). The constraints on model parameters

wy 2 0-5d1 y Wy S 1.5 % dl
}81 2 0.41.01 ’ h; S 1.0 = un

were added to the model definition to restrict the relative dimensions of an object
somewhat.

A calibrated stereo pair of three instances of this class was captured and stereo
edge fragments extracted using PMF stereo [4]. Edges less than a certain length
(assumed unreliable) and those in the background were removed manually. The
remaining edge fragments were clustered into three sets of mutually orthogonal
edges and an interpretation tree search conducted to determine legal interpretations
and parameter values. Finally the object pose was computed by substituting the
parameter estimates into the B-rep and computing a best fit for the transformation
from model to sensor coordinates.

Figure 3 shows wire frames for the three (computed by substituting the param-
eter values into the B-rep) superimposed on the left camera image in the computed
poses. Figure 4 gives the computed ranges of the parameters for each of the three in-
terpretations. We can use these ranges to distinguish between the different instances;
if the parameter ranges for the same parameter in two different interpretations are
different then we can say that the two represent different instances of the same class.
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Figure 1: A sample object class and pos-  Figure 2: Three instances of the object
sible parameterization. class with stereo data superimposed on
the left camera image.

Figure 3: Wire frames generated by sub-  Figure 4: The solid bars indicate the
stituting the computed parameter values  computed ranges for the parameters.
into the B-rep, superimposed over the Ior each parameter the ranges from top
left camera image in the computed pose  to bottom correspond to the interpreta-
(no hidden line removal). tions in figure 3 from left to right.



