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ABSTRACT

Mobile objects are frequently confined to move on a ground surface which,
locally at least, is approximately flat. Existing structure-from-motion (SFM)
algorithms make no use of real-world motion constraints of this kind. In this
paper we present a simple novel SFM algorithm whereby the above motion
constraints can be conveniently incorporated into the constraint equations on
the relative depths of rigid points. The simplicity and homogeneity of the
constraint equations allow simple and robust direct solutions of the relative
depths. The proposed algorithm is non-iterative, and in general requires a
minimum of three points in two frames. It is superior to general linear SFM
algorithms not only in computational cost but also in accuracy and noise
robustness.

1. Introduction

Motion analysis in general and structure from motion (SFM) in particular have been
areas of intense research in the last decade. Numerous approaches have been reported in
the literature. For a review see [1]. Problems associated with these approaches, such as
high computational complexity, high noise sensitivity, and inefficient use of available
information, are enumerated in [2].

We show in this paper that, by working in appropriate coordinate systems and by
making use of a priori knowledge about scene geometry and real-world constraints on
object movements, simple yet robust SFM algorithms can be developed. The motivation
of this work comes from the desire to build 3-D geometric object models from
monocular monochromatic image sequences [3] in the context of the ESPRIT II project
P2152 (VIEWS - Visual Inspection and Evaluation of Wide-area Scenes). The goal of
the project is to build a generic vision system for the automatic monitoring and
surveillance of land vehicle and airport traffic in known scenes. Fig.l(a) and (b) show
images from two traffic scenarios currently used in the project. A common feature in the
two scenarios is that the objects (either cars or aeroplanes) move on a ground surface
which, locally at least, is approximately flat. We approximate the flat ground surface by
the X-Y plane of a world coordinate system (WCS), whose Z-axis points upwards. The
movement of the objects in this WCS is constrained in that they can only rotate about
and cannot translate along the Z-axis (assuming, of course, that the vertical movement
due to suspension etc. is negligible). Constrained motion of this kind is common: mobile
objects frequently move on the ground, and objects conveyed by conveyor belts move on
well-defined planes.

Existing SFM algorithms are usually defined, and constraint equations are
formulated, in a camera-centred coordinate system. They are thus unable to make
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Figure 1. Two traffic scenarios used in the ESPRIT II project P2152 (VIEWS)

effective use of the ground plane motion constraints described above since the
constraints in the camera coordinate system, although computable, are difficult to
incorporate into the constraint equations.

In this paper we describe a simple SFM algorithm based on the distance invariance
property of the rigidity constraint [5], which makes effective use of the real-world
motion constraints by formulating constraint equations in the world coordinate system.
The resultant constraint equations are second-order polynomial equations, each of which
involves only two unknowns. The simplicity and homogeneity of these equations allow
simple and robust direct solutions. In the subsequent discussions, we make the following
common assumptions: 1) Camera parameters (intrinsic and rotational) are known; 2)
Feature points have been identified, and inter-frame feature correspondences have been
established; and 3) Camera is static, and object motion is rigid.

The paper is organised as follows. In the next section, we concentrate on how to
make use of known real-world motion constraints to simplify the constraint equations on
the relative depths (i.e., the structure) of the given rigid points. In Section 3 we then
describe simple robust methods for solving the constraint equations to recover the
relative depths. The estimation of motion parameters from the recovered structure is
discussed in Section 4. Experimental evaluation and comparison results of the proposed
algorithm under both synthetic and real image data are summarized in Section 5. The
paper is concluded in Section 6.

2. Constraint Equations

We assume a pinhole camera model with perspective projection as shown in Fig.2. Under
this imaging model, the CCS (Camera Coordinate System) coordinates Pc and the WCS

View Direction image Plane

Figure 2. Coordinate Systems and Imaging Geometry
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(World Coordinate System) coordinates Pw of an image point Pj = (u, v) are easily
shown to be given by [4]

Pc = (Xu,Xv,XF); Pw = (XU+j,XV+k,XW+l) (1)

where F is the camera focal length, X a positive depth scale, (j, k, I) the WCS
coordinates of the origin of the CCS, and U, V and W are defined by

W=cu +fv + iF
where a, b, c, d, e,f, g, h and i are the rotational camera parameters [4]. Thus the squared
distance measured in the WCS between two points Pm with image coordinates fMm,vm)
and Pn with image coordinates (un,v,J is given by

dL = (XmUm - XnUn)
2 + (XmVm - XnVn)

2 + (XnWm - XWn)
2 (2)

Similar equations can be written for the same points in a frame after motion. For
example, the squared distance, using primed notations to indicate the new frame, is
given by

d'L = &mU>m-X'nU<f+ (X'mVm-X'Vn)2
+ (X'nW'm-X'W'n)2 (3)

The distance invariance property of rigid motions requires

This basic constraint equation relates the depth scales (structure parameters)
(Xm, Xn, X'm, X'n) to image coordinates [5]. If objects are confined to move on a flat

ground surface which, by definition, is the X-Y plane of the WCS, then the Z
coordinates of Pm and Pn are invariant to motion, i.e., XmWm +1 = X'mWm +1 and
XnWn +1 = X'nW'n +1, or equivalently

From (2) to (5), we obtain

K = W~K' P = m'n (5)

*J?n +BmnKK+AA = o (6)
where Am, Bmn and An are terms computable from U, V and W [4]. (6) is a second-
order polynomial equation, and is the basic constraint on the relative depths of two rigid
points which move parallel to the ground surface. For N such points Pi,P2> •••>''#>

N(N-l) ^.rr N(N-l)
there are = different point pairs thus ^ constraint equations of type

(6):

Am^m+BmnXmXn + AnX
2
n = 0, n,me {1,2, ...,JV} ; n> m (7)

These equations are homogeneous in the N unknown depths X ,m = 1,2, ...,N,
which implies that the depths can be determined only up to a global scale factor [1]. We
therefore set one of the unknowns arbitrarily to 1, leaving N- 1 unknowns to be
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determined. It thus appears that one needs only a minimum of two points in two frames
to solve the constrained SFM. This is in general not the case, and at least three points in
two frames are usually required as we discuss in the next section.

3. Estimation of Structure Parameters

If the depths are solved from (7), other structure parameters such as the CCS and WCS
coordinates can be easily computed using (1). Hence we concentrate on how to find a
correct set of depths. Several methods are possible.

3.1 Method A

An obvious choice is to employ the standard nonlinear least squares technique as used in
many existing SFM algorithms [1]. However, such a technique usually requires a good
initial guess, and apart from the inherent high computational complexity, it may diverge
or converge to a wrong solution.

3.2 Method B

If we fix one of the depths to determine the global scale, then a simple direct solution for
the depths stands out immediately. We set X, = 1, then the N - 1 constraint equations

associated with Px of (7) become N — 1 quadratic equations each of which specifies the
depth of a single point:

VsL +BlmK + A1 = 0, me {2,3 N} (8)

These equations are clearly independent of each other except under certain degenerate
cases (e.g., coplanar points). Roots of the equations are given by the standard formula:

me {2,3, ...,N} (9)

The correct root may be determined by imposing the physical constraint on the depths
Xm > 0, m = 1,2,..., N. But under situations where both roots are positive, we need to

use the constraint between the point Pm and at least one additional point [4], i.e., at least
three points are required to solve the constrained SFM uniquely.

3.3 Method C

A problem with Method B is that the depths of all other points are obtained by satisfying
only the constraint equations between these points and the point (P1) with the arbitrarily
fixed depth (let us call such a point the reference point). Thus any noise or error (e.g.
matching error, perturbation in image coordinates) associated with the reference point
(F,) will degrade the accuracy of the recovered depths of all other points. This is highly
undesirable. In fact, without any a priori knowledge, there is no reason to choose any
particular reference point. All points should be equally favoured as the reference point,
and all available constraints should be imposed. This may be achieved by taking each of
the given points in turn as the reference point, and solving the depths of all other points
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by Method B described above. At the end of this process, we obtain N sets of depths for
a set of N points:

where Xjj = 1, n = 1, 2 N, and the superscript n indicates the depths computed

under reference point Pn. Let us normalize the depths of each set in (10) with respect to

(say) the first depth of the corresponding set, and denote the N normalized sets of depths
as

~ n

where X1 = 1, n = 1, 2, ...,N. Then we define the unique solution for the depths of

the N points as

Xm = med\an{Xm,n = 12,...,N},m = 1,2 N (12)

(12) is justified by the fact that all sets of normalized depth scales in (11) describe the
same relative structure of the given N points. Other methods for finding a correct set of
depths from the N un-normalized sets of depths are possible, but (11) and (12) perhaps
specify the simplest.

3.4 Method D

Another possible solution to (7) is to combine Method A with Method B or C, that is to
use the results of Method B or C as the initial guess to bootstrap the iteration process of
Method A.

After unprimed depth scales are obtained, primed depth scales (i.e., depth scales
associated with the second frame) can be calculated by (5), and the CCS and WCS
coordinates by (1). For both computational and accuracy considerations, we have only
implemented Method C.

4. Estimation of Motion Parameters

The motion we consider has three degrees of freedom: the rotation angle 0 about the Z-
axis, and translations Tx and Ty along the X- and Y-axis respectively. The pre- and post-
motion WCS coordinates Pwm = (,xm,ym,zm) and P'wm = (x'm,y'm,z'm) of point
Pm are related by

(13)

where 0 is measured anti-clockwise. To determine the rotation angle from known WCS

coordinates, let the X-Y plane projections of a point pair Pwm and Pwn in the first

frame, and P'wm and P'wn in the second frame be Qm, Qn and Q'm,Q'n, then we

compute 0 by (see Fig. 3)



306

0,

Qn, \Qm

Figure 3. Computation of Rotation Angle

2 £ £ -1((QmQm)-(Ql
mQ'm)

6 =

where we take the average of the angles between all possible point pairs to combat

noise. The angle given above only represents the magnitude of the true rotation angle 0

as the sign of the angle, i.e., the direction of rotation, is lost in the cos'1 operation. The

sense of 6 can be easily determined based on (13). After the rotation angle is obtained,
the translations can be calculated directly from (13). Again to control noise, we take the
averages of the results computed from each point, i.e.,

ty _ +ym
sin6 )

m = 1

7Y = — > (y'—xmsva\j — )> cos9 )
m = 1

5. Experimental Results

The proposed algorithm has been applied to both synthetic and real image data. We
compare the performance of the proposed algorithm with that of a recently published
SFM algorithm [6] in order to make a quantitative appraisal of our algorithm. [6] is
chosen because it is the most recent version of the well-known linear SFM algorithms
[7-9], and has been shown to be superior to the original linear algorithms [7,8] in
performance [6].

Using synthetic data, Monts Carlo simulations were conducted to investigate the
noise sensitivity of, and the influence of the number of point correspondences on the
two algorithms. A set of six known motions were simulated under a typical camera
configuration. True image coordinates were shifted by a random number which is
uniformly distributed over (-AE, AE). Motion parameters computed by the two
algorithms were compared with the ground truth, and the mean and standard deviation
of the absolute difference in each parameter were calculated. Comprehensive testing has
been carried out [4]. Here we give an example. Table 1 shows the results obtained under
AE = 0.5 pixels and using 15 points. From the experimental results, the following
general observations can be made [4]:

1. The motion parameter errors in [6] increase much more rapidly with noise than
those in the proposed algorithm.

2. The motion parameters computed by the proposed algorithm are in general much
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Table 1
Noise Performance Comparison Between Proposed Algorithm and [6]

Proposed Algorithm Algorithm [6]
Ground Truth error mean error std. dev. error mean error std. dev.

theu
Tx
Ty

theu
Tx
Ty

theu
Tx
Ty

theu
Tx
Ty

theu
Tx
Ty

theu
Tx
Ty

-4.56
1000.0
2000.0

0.0
1234.0
567.8

4.56
1000.0
2000.0

12.34
0.0
0.0

23.45
-2500.5

234.5

123.4
0.0

2345.6

0.66
196.46
185.96

1.59
202.88
189.82

0.62
166.02
243.62

0.55
179.8
305.68

0.61
152.39
424.31

0.27
14119
277.19

0.71
278.42
235.01

0.96
288.17
272.61

0.72
206.74
327.23

0.56
712.62

1274.59

0.67
34132

1138.61

0.24
151.02
294.79

1.56
30621.18
13354.1

1.08
1216187
11505.89

1.09
11214.69
6362.82

0.95
1637.23
2297.8

0.82
824.84

105134

0.31
706.87
80145

0.72
244240.38
42783.53

0.34
76293.94

105845.36

1.34
142727.91
49235.69

1.11
10349.74
1587171

0.98
1147.89
2334.57

0.33
716.0
873.09

more accurate than those by |6] especially under high noise conditions.
3. The performance of the proposed algorithm is consistently improved by using more

point correspondences.
4. Under low noise conditions, the use of more points generally improves the

performance of [6]. The effectiveness of using more points to reduce errors in [6] is
significant when the number of points is increased from 10 to 15, but is marginal
when further points (e.g., from 15 to 20) are employed. This observation agrees with
the experimental results presented in [6] (see Fig.8 and Fig.9 of [6]).

5. Under high noise conditions (AE> 1.0 pixel), the use of additional points further
degrades the performance of [6].

With real image sequences, the assessment of the accuracy of the recovered structure
is not straightforward as the ground truth is usually unknown. Proposals have been made
[6] to use the discrepancy between the image of the reconstructed 3-D structure and the
known point correspondences as a measure of accuracy. We argue that such a measure is
inappropriate as it does not reflect the accuracy of the recovered relative structure since
multiplying the depths of the feature points by different factors changes the relative
structure of the points but does not affect the measure of this kind. We thus propose a
new assessment procedure based on model matching [10]. We have applied the two
algorithms to a number of real image sequences [4]. An example is given in Fig.4 which
shows 12 points identified on a moving lorry, and the corresponding displacement field.
The heights of the 12 points recovered by the two algorithms are tabulated in Table 2,
where the height of Pj is assumed to be 1000 mm in order to fix the global scale.
Agreements (at least partially) between our perception of the image and the heights
recovered by the proposed algorithm is evident in Table 2, whereas the heights obtained
by [6] appear widely wrong. This is probably due to the high noise sensitivity of [6], and
its making no use of the ground plane motion constraint. To further assess the accuracy
of the relative structure of the 12 points recovered by our algorithm, the recovered WCS
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Figure 4. The moving lorry and its displacement field

Table 2

Recovered

Name of

Heights

Point
(in mm) of Lorry Points

Algorithm [6]
by [6] and Proposed Algorithm

Proposed Algorithm

Pl2

Pll

PlO

P9

P»

P7

P6

PS

P«

P3

P2

Pi

5359.7
6182.4
4115.3
5087.4
5901.6
6474.9
7127.7
9136.1
7113.3
6190.6
5910.4
1010.2

2323.8
3289.6
919.1
846.9

1451.5
2312.6
3201.3
3407.3
3388.7
3546.8
1304.0
1000.0

coordinates of these points are converted into a simple polyhedral model L3J, which is
displayed in Fig.5 under three different viewpoints. The model is then matched against

Figure 5. Three different views of the recovered lorry model

the lorry image as illustrated in Fig.6. The matching is very good. The accuracy of the

Figure 6. Matching between the recovered model and four lorry images

model, hence the accuracy of the recovered structure of the 12 points, is evident in Fig.4
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to Fig.6. Results of this kind could not be obtained by [6].

6. Conclusions

In the real world, the movement of many objects (e.g., cars, objects on conveyor belts,
etc.) is constrained in that they can only move on a fixed plane or surface (e.g., the
ground). A new SFM algorithm has been presented in this paper which, by formulating
motion constraint equations in the world coordinate system, makes effective use of the
physical motion constraints of this kind. The algorithm is computationally simple and
gives a unique and closed-form solution to the motion and structure parameters of rigid
3-D points. It is non-iterative, and in general requires a minimum of three points in two
frames. The algorithm has been shown to be superior to the existing linear SFM
algorithms in accuracy and robustness, especially under high noise conditions and real
image data.

The algorithm in its present form can be extended and improved in many directions.
For instance, longer image sequences can be used, and the recovered structures can be
integrated over time by means of (say) extended Kalman filtering. Meanwhile, the effect
of camera parameter errors on the reliability of the proposed algorithm needs to be
studied.
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