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Abstract
In this paper we describe a novel scheme for 2D shape representation
based on fractal geometry. The representation (or fractal signature) of
the shape is an external scalar transform which contains information from
a wide range of scales. It appears to be unique except for size, orienta-
tion, position and reflection and we show that it degrades gracefully with
noise. We show how the fractal signature can be used for fast shape
matching and suggest how the technique can be extended to deal with
partial boundaries.

1 Introduction
The analysis of two-dimensional curves is an important area in computer vision.
For 2D shape matching we require a simple shape representation that can be
easily compared to a library of known (or previously encountered) shapes. Most
simple representations are deficient in the representation of either fine scale
detail or in the description of larger scale global structure. In his review of shape
coding techniques Marshall [6] states that the problems of scale have always
been present in this area. Furthermore he states that working simultaneously
over a range of scales must have more chance of achieving successful shape
recognition than operating at a single arbitrary scale.

The main approaches to multi-scale description are Scale Space [3] and Frac-
tal Geometry [5]. The latter approach produces descriptions which are simpler
and yet, to quote Pentland [5], appear to capture all of the shape structure
relevant to human perception.

2 Fractional Brownian Model
Figure 1 shows a closed boundary B which has a centroid C. Modeling the
boundary as a 1-dimensional fractional Brownian function (see [1, 2, 5] for
details) we can define a function e(A#) as

(1)
The function c(A(?) gives the expected value of the difference of the r values
for all pairs of points separated by an angle AO. Note that r(0) may be multi-
valued.

For a fractional Brownian function with zero-mean Gaussian distribution
N(0, a2) it can be shown that

e(A0).A0-H = K (2)
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Figure 1: Arbitrary boundary

Where K is a constant equal to \/2/ir <r and / / is a constant related to the
fractal dimension D of the curve by H = 2 — D.

Equation 2 is thus equivalent to

log e( A0) - # log AS = log A' (3)

If we plot logf(A0) against log AO then we expect to get a straight line with a
gradient H and intercept log A'.

3 Shapes in Digital Images
The above theory was derived in terms of a continuous boundary. When a
region is extracted from an image we get a boundary that is made up of a list
of discrete points. If we assume that the boundary is straight between points
then we can scan the list and generate, by interpolating where necessary, a list
of polar coordinates (r,-, niOmin) i = 1,2,..., N where n,- is an integer and 6min

is a constant. The value of N will be 2ir/9min if the boundary function is single
valued but greater if it is multi-valued.

We can then calculate e{A6) for integral multiples k of 0m i n by scanning the
polar list. As we are comparing all pairs of points this takes a time of 0(N2).

c(k6min) (4)

where,

l i f "•' ~ ?i = k

0 otherwise
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Figure 2: Various letters
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Figure 3: Fractal signatures of various letters

As e(A#) has period 27T but is symmetrical about AO = IT the range of AO
is \0min . . . TT]. The value of 0m t n chosen was TT/180, giving 180 data points for
the graph.

If we plot the log-log graphs for the shapes in figure 2 then we get the curves
in figure 3. Linear regions occur where the shapes behave like fractals (ie. they
are statistically self similar over a range of scales). The gradient of such sections
has been used in relation to 3D image surfaces to estimate the fractal dimension
as a measure of texture [5, 4, 7, 8]. However, the curve as a whole represents a
measure that changes continuously over all scales. So rather than use part of
the curve, we use the whole curve as a multi-scale shape signature called the
fractal signature.

4 Invariance of Fractal Signatures
Since ((AO) is measured relative to the centroid of the shape, the fractal signa-
ture is translation and rotation independent. As we use the difference of radii
the signature is reflection invariant.

Scaling the shape would result in a similar scaling of the e values and thus
a constant offset on the log graph. In order to overcome this the signature can
be normalised by dividing by the mean radius ie. we can define

e>(A0) =
E[\r(6 + A0)-r(6)\]

E[r(6)} (5)
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E
F
G
H
I
J

E
0

0.856
1.869
1.460
3.511
3.418

F
0.856

0
2.387
1.599
3.072
3.032

G
1.869
2.387

0
2.888
3.424
3.098

H
1.460
1.599
2.888

0
3.840
4.015

I
3.511
3.072
3.424
3.840

0
0.958

J
3.418
3.032
3.098
4.015
0.958

0

Table 1: Euclidean Distance

E
F
G
H
I
J

E
0

0.528
0.734
0.345
1.367
1.480

F
0.528

0
1.242
0.832
0.894
1.012

G
0.734
1.242

0
0.656
1.714
1.799

H
0.345
0.832
0.656

0
1.634
1.748

I
1.367
0.894
1.714
1.634

0
0.147

J
1.480
1.012
1.799
1.748
0.147

0

Table 2: Bounded Area

This normalisation also cures the problem that the signatures of rj = f(0)
and r-x = f(8) + constant would have been the same.

The normalised signature appears to be unique except for scaling, rotation,
translation and reflection. We are currently investigating the effects of other
affine transforms (ie. stretching and shearing) on the signature of a shape.
Preliminary results suggest that it may be possible to determine the signature
of the transformed shape from the signature of the original. If this is so then it
may also be possible, given an unknown shape, to determine whether it is an
affine transformation of one of the known shapes.

5 Matching Fractal Signatures
Unknown shapes can be matched against a library of known shapes by com-
paring fractal signatures. Whilst the comparison of signatures is not trivial it
should be much simpler than direct comparison of the boundaries since we have
removed the effects of scaling, rotation, reflection and translation.

Figures 2 and 3 show the discriminating power of the signature. All the
signatures are clearly distinct. The closest are those for the letters E and F,
and I and J, wThich is to be expected since the shapes are very similar.

So far we have used two different methods for comparing signatures

1. Euclidean Distance - treating the signatures as 180-dimensional vec-
tors and calculating their separation.

2. Bounded Area - treating the signatures as continuous curves and
calculating the (absolute) area between them.

The values of these metrics for the shapes in figure 2 can be seen in tables 1
and 2. The former method appears to be the best since it gives relatively small
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Figure 4: E with noise s.d. 0.2, 0.4, 0.6, 0.8, 1.0 and 1.2
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Figure 5: Euclidean metric on E's with noise

values for E-F and I-J whereas the latter method gives a smaller value for E-H
than E-F.

6 The Effects of Noise and Occlusion
As each e' value is an average over the whole shape, minor occlusions and
deformities are smoothed out to some extent. Thus, the signature degrades
gracefully with occlusion and noise.

Figure 4 shows the E boundary (originally 65x130 pixels) with noise added
to the x and y positions of all the points. The noise is zero-mean Gaussian
with the given standard deviation and the coordinates rounded to the nearest
integer. The noisy boundary is then considered to be the polygon joining the
points in the same order in which they originally existed. Figure 5 shows
the Euclidean distance between the signature of the noisy boundary and the
signatures of the original shapes. The values plotted are an average for 10
examples (the distance can vary by about 5%). For all the noisy shapes, the
closest signature is that of the original E. However, for noise with a standard
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Figure 6: Rectangle occluded in various ways
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Figure 7: Fractal signatures of occluded rectangles

deviation of more than 0.6 pixels the distance to the E is greater than the
distance between the original E and F. These results, and others, suggest that
two shapes whose signatures have a separation of less than 0.5 can be considered
to be the same.

Figures 6 and 7 show how the signature of a rectangle changes when it
is occluded in various ways. Some types of occlusion have more pronounced
effects than others. What is important is the overall change in shape not the
amount of the boundary occluded. Using the Euclidean metric described above
the signatures of the occluded rectangles are at distances of between 4.6 and
5.6 from the original. Hence they are much too different to be recognised using
the simple matching technique.

We are investigating the effects on the signature of removing parts of the
shape boundary (and filling the gaps with straight segments). If the effects are
predictable then it should be possible to identify parts of the boundary that
may be due to an occlusion (from other image information) and remove them.
This would then allow us to recognise partial boundaries.
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7 Conclusions
The proposed fractal shape signature has substantial potential for shape match-
ing. Although it is simple, it contains information from a large range of scales.
It appears to be unique except for size, orientation, position and reflection. In
addition it degrades gracefully with noise. The major disadvantage with the
present method is that although the signature degrades gracefully with occlu-
sion, the matching method is too primitive to handle major occlusion. Hence
we cannot generally recognise partial boundaries.
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