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In this paper we suggest an optimization approach to vi-
sual matching. We assume that the information available
in an image may be conveniently represented symbolically
in a relational graph. We concentrate on the problem of
matching two such graphs. First we derive a cost function
associated with graph matching and more precisely associ-
ated with relational subgraph isomorphism and with max-
imum relational subgraph matching. This cost function
is well suited for optimization methods such as simulated
annealing. We show how the graph matching problem is
easily cast into a simulated annealing algorithm. Finally
we show some preliminary experimental results and dis-
cuss the utility of this graph matching method in computer
vision in general.

INTRODUCTION

The problem of matching is a central one in computer vi-
sion. Given two visual descriptions, the problem is to find
the best one-to-one correspondence between elements of
the two descriptions. Examples of such matching pro-
cesses are stereo, object identification, and learning. Al-
though many efforts have been put into solving this prob-
lem, no satisfactory solution has been suggested so far.

There are at least two reasons for which the problem is
difficult. The first is because it is not yet clear which vi-
sual description is the best suited for matching. Images
are corrupted by noise and any abstract image description
scheme still contains a lot of irrelevant information. The
second reason is because the matching itself is combina-
torial in complexity (see below for a discussion). More-
over, most matching problems are np-complete. There-
fore, heuristics are generally used to find an acceptable
solution in reasonable time. However, heuristics are prob-
lem specific and there is no guarantee that a heuristic
tuned to solve a matching problem will be effective for
solving another problem.

In the past, solutions to the problem of matching two
structural descriptions involve either a search graph or a
search tree. Given two graphs to be matched one method
consists of building an association (or correspondence)
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graph. Then the problem of matching the two graphs
is equivalent to the problem of searching for the largest
maximal clique in the association graph [1], [2]. The main
problem with this approach is the following. In general,
the degree of connectivity between features in an image
is weak, i.e., there is no explicit relationship between
a feature located in the upper-left corner of the image
and another feature located in the bottom-right corner.
Therefore, in order to insure the transitive closure of the
association graph, one has to add relationships artificially
[10].

An alternative to search-graphs is search-trees, data
structures that are built dynamically as the search pro-
ceeds. One advantage of using trees is that heuristics can
be easily combined with the search. Ullman suggested an
algorithm for subgraph isomorphism [16] and Gmur and
Bunke adapted this algorithm for object recognition [7].
A similar approach is to be found in [15]. Grimson and
Lozano-Perez built an object recognition system in which
the matching is achieved by a hypothesize-and-test con-
trol structure associated with an interpretation tree [8].

This paper describes work that is part of a more general
research effort aimed at suggesting a unified approach to
visual matching. Such an approach must incorporate:

• a scheme for producing stable descriptions from im-
ages;

• a representation framework well suited for visual de-
scriptions and for performing the matching process
and

• a scheme for performing the matching itself.

In this paper we address the last of these items. We
will assume that an adequate representation for visual
descriptions is a relational graph representation. In such
a graph nodes represent features and arcs represent re-
lationships between features. The problem of matching
becomes the problem of comparing two relational graphs.

First we show how relational graph matching is cast into
a combinatorial optimization problem. One way to solve
such a problem is to use simulated annealing. Second we

319



recall this optimization technique and show that graph
matching problems are easily cast into a simulated an-
nealing process. Third we briefly describe a system that
extracts a relational graph from an image, [11]. Finally
we provide some preliminary experimental results pro-
duced by matching visual descriptions with the use of a
simulated annealing algorithm.

GRAPH MATCHING

A relational graph is a graph having several possible la-
bels associated with its arcs (each individual arc having
only one label). Such a graph can be decomposed in a
number of simple graphs such that within such a (sim-
ple) graph, only one label is present. A simple graph
is conveniently described by its adjacency matrix. The
coefficients of this matrix are either 1 or 0, the diago-
nal terms being null1. It follows that a relational graph
can be represented by a number of adjacency matrices
equal to the number of possible labels (relationships) in
the graph. It will be argued that such a relational graph
is a convenient way for representing visual descriptions.
From now on we denote by "graph" a simple graph.

We consider now two graphs with their associated binary
adjacency matrices. The goal is to determine whether
there exists a mapping between the two graphs. The
following cases are of interest for the developpment of
our solution:

MATCHING AND OPTIMIZATION

In this section we show how the graph matching problems
mentioned above can be cast into combinatorial optimiza-
tion problems, that is, build a cost (or energy) function
associated with each problem and looking for the match-
ing minimizing this cost. The choice of the optimization
method depends on the mathematical structure of the
cost function. In particular, for the simulated annealing
optimization method one needs a quadratic form for the
cost function. Indeed, the energy variation that need be
computed in the case of simulated annealing has a simple
mathematical structure if the cost function is quadratic.

Graph isomorphism

Let GA = (VA,WA) and GB = (VB, WB) be two simple
graphs with N vertices each. V denotes the set of ver-
tices (nodes) and W denotes the set of arcs associated
with a graph. Let A and B be the adjacency matri-
ces associated with these two graphs. The problem is to
find a bicontinued one-to-one correspondence, II between
VA = (VI,...,VN) and VB = (v[,..., v'N) which min-
imizes a distance (maximizes the overlap) between the
two graphs. We use a classical graph-distance definition:

1. Graph isomorphism. Does an isomorphism exist be-
tween the two graphs? This problem is relevant only
if the graph have the same number of nodes, say
N. The number of solutions (the number of possible
mappings) is N\ and the problem is not even proved
to be np-complete, [5].

2. Subgraph isomorphism. Does an isomorphism exist
between a graph and a subgraph of another graph?
If the number of nodes are respectively M and N,
N < M, the number of solutions is (j$)N\. This
problem is known to be np-complete.

3. Maximum subgraph matching. Find the maximum
isomorphic pair of subgraphs such that one subgraph
is part of a graph and the other subgraph is part
of the other graph. With the same notations the
number of solutions is ^ i l id^XD*! anc* a g a m t n e

problem is np-complete.

Maximum subgraph matching is the graph matching
problem of interest in computer vision: Given two de-
scriptions (two images, an image and an object,...) the
problem is to find the largest part these descriptions have
in common. But in order to solve this problem we have
to solve for subgraph isomorphism first.

1 One may consider a graph in which there are nodes of various
types. It is possible to assign a numerical value to each type. In
this case these values associated with the nodes will constitute the
diagonal terms of the adjacency matrix. The approach described
in this paper applies as well to these more general graphs.

This expression means that the isomorphism must con-
serve the vertex connectivity. For two identical graphs
(vertices and arcs) there is an isormorphism for which
this distance is null.

We associate a permutation matrix with each possible iso-
morphism. The coefficients of this matrix P are defined
as follows:

if U(vk) = v\
otherwise (2)

One may notice that u>A{vktvl) = akU i-e-> a coefficient
of the adjacency matrix A. Similarly we have:

N N

wB(Tl(vk),

This is a coefficient of the matrix PBP*. Using the stan-
dard euclidian matrix norm, equation (1) becomes:

J(P) = \\A - PBP*\ (4)

The graph isomorphism problem is reduced now to the
problem of finding the permutation matrix P associated
with an isomorphism II which minimizes equation (4).

Subgraph isomorphism

It is very unusual that two visual descriptions have associ-
ated with them two graphs with exactly the same number
of nodes. Consequently, the graph isomorphism problem
must be transformed to be able to deal with graphs of
different size.
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Let TV be the number of nodes of GA and M be the
number of nodes of GB- AS before N < M. Again the
problem can be formulated as a minimization problem
of the form of equation (4) where P is a N x M matrix
representing an isomorphism II. To satisfy the subgraph
isomorphism problem, P is constrained to have the fol-
lowing property:

Vi,
(5)

This property means that each vertex of GA has exactly
one correspondent in GB and that each vertex of GB has
either one correspondent in GA or no correspondent at
all. Again the subgraph isomorphism problem is reduced
now to finding P minimizing equation (4). This equation
can be rewritten as:

J(P) = \\A\\2 - 2A • PBP% + \\PBP(||2 (6)

In this equation "•" denotes the matrix dot product. Ob-
viously the first term (||^4||2) is constant.

J(P) = \\PBPlf -2A-PBPX

N N M M

k=l1=1 « = 1 j = l

N N M M2 E E E E
it=i /=i «=i j-i

(7)

One may notice that the cost function has a discrete
quadratic form. Using the structure of P the expres-
sion of the function to be minimized can be simplified.
Indeed a coefficient of P can be written using the Kro-
necker symbol: pki = $v'n(vk)- One may notice that:

if H(vk) = v'i then v'{ = v'n(k) (8)

After a few algebraic manipulations the cost function can
be written as:

AT N

(9)
*=i/=i

Hence, the subgraph isomorphism problem is reduced to
the problem of finding the mapping II which minimizes
equation (9).

Maximum subgraph matching

We have been unable to find a similar formulation for the
maximum subgraph matching problem. Instead, we sug-
gest a heuristic which pruns graph vertices which don't
satisfy a local criterion.

The first step consists of extracting a subgraph of GB
which best matches GA using the minimization criterion
of equation (9). This subgraph is the maximum overlap
(A/O) between GB and GA- If the distance between GA
and MO associated with the computed isomorphism is
null (the distance is computed according to equation (1)),

then there is an exact match between GA and a subgraph
of GB, i.e., MO. If this distance is not null, one has
to look for the largest subgraph of GA isomorphic to a
subgraph of MO.

For each vertex vk of GA we compute the following mea-
sure:

N

- wB(n(vk),n(v,)))2

The nodes for which Dk is not null are pruned and a
subgraph of GA isomorphic to a subgraph of MO is thus
derived. However, as with any heuristic, the order in
which the nodes are considered is important. A slight
improvement to the pruning just described is to consider
the value of Dk as a measure of the goodness-of-node
assignment. Nodes of GA for which this measure is not
null are ordered from the best matching node to the worst
matching node. Pruning, which recursively shrinks GA,
should start with the worst one.

Relational graph matching

We turn back now to the problem of matching relational
graphs. We have S possible relationships in such a graph:
72-1,..., Us- Moreover we associate a weight X, with each
relationship. Then the relational subgraph isomorphism
minimization criterion can be written as:

(11)

In this formula, for each s, E' is given by an equation
of the type of (9). Therefore the cost function associated
with the relational graph matching problem is a weighted
sum of the costs associated with each simple graph match-
ing.

For the case of maximum relational subgraph matching,
the pruning criterion becomes:

S N

To summarize, the problem of matching two visual de-
scriptions is equivalent to the minimization of a cost func-
tion and a pruning operation provided that the visual
descriptions can be mapped into a relational graph rep-
resentation.

OPTIMIZATION AND SIMULATED ANNEA-
LING

In order to reach low energy states of a physical sys-
tem, one way to proceed is to heat up the system to a
high temperature and to cool it down slowly. This an-
nealing process constrains the evolution of the system to-
wards regions of low energy while avoiding local minima
(metastable states). Metropolis [13] suggested that this
process could be simulated numerically by a simulated
annealing process. Metropolis suggested a Monte Carlo
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algorithm that generates a sequence of states which con-
verges to a Boltzmann distribution in the limit. For a
given temperature T this algorithm begins in an arbitrary
state and successively generates candidate state transi-
tions at random. Each transition has associated with it
a change in the global energy of the system, say AE. A
transition is accepted with the following probability:

1
exp(-A£/T)

if AE<0
otherwise (13)

Kirkpatrick [12] recognized a similarity between the
Metropolis method and combinatorial optimization.
There are results showing the existence of annealing
schedules (the rate of decrease in temperature) that guar-
antee convergence to a near ground state in finite time;
these results are due to Geman and Geman [6].

The Metropolis algorithm proceeds as follows:

1. Begin with the system in an arbitrary state.

2. Fix the initial temperature.

3. Make a small change in the state.

4. Evaluate the resulting change in energy.

5. Accept the transition to the new state with the prob-
ability defined by equation (13).

6. Repeat steps 3 through 5 until the system reaches
an equilibrium, i.e., until the number of accepted
transitions becomes unsignificant.

7. Update the temperature according to an annealing
schedule and repeat steps 3 through 6.

It is worthwhile to notice that an alternative to the
Metropolis algorithm, i.e., microcanonical annealing has
been used by Barnard [3] for stereo matching.

Matching and simulated annealing

In order to apply a simulated annealing algorithm to the
graph matching problem, we have to make explicit the
definition of a state, a state transition, a random gen-
eration of a state transition, and the change in energy
associated with the state transition. We concentrate on

Gb Gb>

a) an isomorphism b) a mapping (J>
v virtual

c) a new mapping after
a state transition

Figure 1: An isomorphism and a slate transition to a new
isomorphism

relational subgraph isomorphism. Given a small graph
GA and a large one GB , the objective is to find a sub-
graph of GB isomorphic to GA- Moreover, the isomor-
phism must minimize the criterion of equation (11). The
similarity between graph matching and annealing goes as
follows. A state is an isomorphism and the space of possi-
ble states is the set of possible isomorphisms. Let II be an
isomorphism mapping GA to a subgraph of G B , e.g., Fig-
ure 1. We define a mapping $ from GB to GA U {^virtual}
where vvirtUai is a node artificially added to GA that is
not connected to the real nodes of GA • For v't £ GB and
Vk € GA the mapping $ is defined as follows:

*(»{) = vk if U(vk) = v\
otherwise

(14)

A state transition is obtained by interchanging the corre-
spondents of two nodes within a mapping to obtain a new
mapping. In order to generate a random state change we
proceed as follows:

1. Select at random a vertex vk in GA- Let II(t>j;) = v\
be its correspondent in GB-

2. Select at random a vertex v'j of GB different than v\.

3. Exchange $(u,') and ${v'j) in GA U {vv,-rtua|}.

This procedure allows us to generate states that are not
confined to the subgraph of GB initially assigned to GA-
After some algebra, the energy change associated with
such a state transition is:

S N

:*'n(m)-*jn(m))(«!m-a?m)

(15)
One may easily notice that the number of possible transi-
tions from a given state is N(M—1). At each temperature
100N(M - 1) transitions are tested and if ION(M - 1)
transitions have been accepted then the system is consid-
ered to have reached an equilibrium at a given tempera-
ture.

FEATURE GROUPING

There are many ways to extract a symbolic description
from an image and to map such a description into a rela-
tional graph. Examples of such graph building processes
are provided by [4], [10], [14], [11], and others. The ratio-
nale underlying these approaches is to transform the raw
intensity data into a representation that is well suited for
higher-level visual processes. Within such a representa-
tion, geometric and topological image properties have to
be made explicit. The process by which the raw image is
transformed into a symbolic description is referred to as
grouping. One way to obtain such a symbolic image de-
scription is to extract contours, to segment these contours
into simple generic shapes, and to extract relationships
between these shapes.

In order to illustrate the utility of the graph matching
process described above we concentrate on a particular
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visual description based on straight-line segments. How-
ever, one has to keep in mind that the grouping process
(or graph building) and the matching process are in fact
two independent processes. Therefore the graph match-
ing technique described above applies to almost any vi-
sual description.

Let's turn back to our particular description. Classical
edge detection and piecewise polygonal approximation
methods produce a list of straight-line segments. Next we
detect two types of segment relationships: segment junc-
tions and segment symmetries (see [11] for a justification
of these choices). A junction appears whenever two seg-
ments terminate at a common point. For two segments
in general position, their axis of symmetry is the bisector
of their angle. Therefore a pair of segments is symmet-
ric provided that their projections on the symmetry axis
overlap. For two parallel segments, their axis of symme-
try is the median axis. The symmetry relationship is best
described on Figure 2. To summarize, a relational graph

pi s p2

Figure 2: A junction (a), a general symmetry (b), and a
parallel symmetry (c).

may be built from an image. Nodes in this graph repre-
sent image segments and arcs in this graph represent one
of the following segment relationships: junction, general
symmetry, and parallel symmetry. Figure 3 shows the
junctions extracted from two images of the same object.

EXPERIMENTAL RESULTS

The first experiment that we run was intended to vali-
date the method. We produced a relational graph from
the image of an object. This graph contains segments
as nodes and junctions and symmetries as arcs. Next
we manually isolated a subgraph of this graph that is
supposed to represent a projected model of the object.
The graph matching algorithm found this "model" in the
initial graph with no error and with a null graph dis-
tance. The next experiment took as input two images
of the same object from two different viewpoints. Rela-

Figure 3: Junctions extracted from the images of the
same object.

tional graphs are again extracted from these images. In
this case the matching consists of subgraph isomorphism
followed by maximum subgraph matching. The result of
matching is shown on Figure 4.

DISCUSSION

In this paper we proposed a symbolic image matching
method based on graph matching and using simulated
annealing. The main originalities of the approach are the
followings:

• Unlike previous work, visual description building
and visual matching are treated independently. The
main advantage of this separation is generality: a
unified approach to visual matching may now be en-
visaged.

• In terms of the graph matching itself we propose an
optimal solution for the relational subgraph isomor-
phism problem and a sub-optimal solution for the
maximum subgraph matching problem. Due to the
expression of the cost function, the associated op-
timization problem is easily cast into a simulated
annealing algorithm which is known to be optimal.

In terms of image description, in the future we intend
to extract relational graphs that contain several types
of features (not just segments) since the graph matching
method developped here can deal with graph nodes of
several types.

We also intend to validate the method over a wide range
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Figure 4: The matched lines in the two images.

of visual tasks: recognition of 3-D objects from 2-D and
3-D data, learning object descriptions from images, stereo
matching, tracking, etc.

Simulated annealing is intrinsically sequential. In the fu-
ture we intend to use intrinsically parallel methods for
optimization such as mean field annealing [9].
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