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suspected abnormalities. Previous attempts to automate
the detection of microcalcifications have used
sequences of progressively more sophisticated methods
to refine a set of candidates e.g. [2], though clinically
acceptable error rates have not yet been achieved.

Screening for breast cancer involves searching for subtle
abnormalities in a large number of complex images, a
task for which the specificity of human interpreters is
known to be poor. We are aiming to improve screening
performance by providing radiologists with machine
assistance in the detection of clinically significant
features. The first stage of the detection process is the
generation of a set of cues to indicate potential
abnormalities. We generally select a cue method for a
particular task because it responds to a known property
of the target. However, cue generators also respond to
non-targets which share that target property. By
combining evidence from a range of cues associated
with different target properties we can increase the
specificity of detection in noisy or cluttered images. We
have performed experiments which demonstrate this.
Two cue generators were applied to a set of 20 digitised
image patches. On- and off-target distributions were
collected for each image and accumulated across the
data set on a leave-one-out basis. Each cue image was
then transformed into a log-likelihood image, enabling
evidence from the different cue generators to be
combined simply by image addition. Results of an
evaluation of single and combined cue methods are
presented.

Breast cancer is a potentially fatal disease that affects
about one in twelve women at some time in their lives. A
national breast screening programme has recently been
instituted with the aim of enabling effective treatment of
the disease by detecting it at an early stage in
asymptomatic women; this programme is expected to
generate over 1.5 million breast X-rays (mammograms)
per year. Mammographic images are highly variable and
often complex. Breast cancer screening involves
systematically searching these images for abnormalities.
Two important mammographic signs of early breast
cancer are clusters of microcalcifications, which appear
as groups of very small, sharp-edged blobs brighter than
their background, and spiculated lesions, which are
characterised by radiating linear structure. Such signs
may be subtle and high intra- and inter-observer
variabilities have been reported [1].

Machine assistance may prove valuable either to
pre-select equivocal and abnormal films for subsequent
detailed analysis or to draw the radiologist's attention to

The first stage of the detection process is the generation
of a set of cues; these indicate which regions of an image
are of further interest. Many techniques have been
developed for extracting simple properties, such as
regions, edges, linear structures and corners [e.g. 3,4,5]
from images. For any given application, we generally
select a cue generation method because it will respond
selectively to some particular characteristic of the target
we are trying to detect. It will, however, also respond to
non-targets in the background which possess that
characteristic, and consequently methods often perform
poorly in complex or noisy images. We can improve the
specificity and robustness of the target-detection
process by combining information from a number of
independent image cues, each responding to a different
characteristic of the target. On-target responses in the
different cue images will be mutually supportive,
whereas off-target responses may conflict. Little work
has been done on the systematic combination of image
cues except at very high levels, for example stereo and
motion, shape and stereo etc [6]. The approach is
related closely to studies of natural (human) image
analysis which suggest the involvement of multiple cues
[7]-

CUES
As our primary objective is to demonstrate the feasibility
of improving detection performance by combining cues,
we have used two readily available cue generators in our
initial experiments. These were chosen to respond
selectively to different properties of microcalcifications.
Both methods are based on mathematical morphology
[4] and use structuring elements which approximate to a
uniform disc. The first is the morphological top hat
transformation, formed by subtracting an opened image
from the original, which we use to preferentially
enhance topographical peaks of restricted size. The
second is a simple morphological edge detector, which
we expect to respond to the sharp edges of the
microcalcifications. Since we intend to combine the
outputs of these two methods, we must ensure spatial
correspondence of the edge responses with the peak
responses. We therefore use a detector of the inner
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edges of bright objects, produced by subtracting an
eroded image from the original.

CUE COMBINATION

We are seeking to combine, in a principled way, cue
generator responses, which are generally scaled in an
arbitrary fashion. Our approach is to estimate the
probability of a true response at each image point for
each cue independently and to combine these
probabilities using Bayesian statistics [8]. We can do this
by gathering data from a similarly-scaled set of training
images in which the positions of the targets have been
identified. Using Bayes rule we can write:

P(lesion)
andP(lesion|x) = P(x| lesion)

P(lesion|x) = P(x| lesion

where x represents a cue generator response and P(x)
the probability of getting that response. We can obtain
P(x|lesion) by examining cue generator responses to
known abnormalities in the training set, and P(x| lesion)
by looking at genuine background responses. It is less
straightforward to establish an appropriate estimate of
P(x), since training data selected for our experiments
are biased to provide more on-target information than
one would obtain from a randomly selected set of
screening films. We can, however, eliminate P(x) by
dividing the above equations to obtain an expression for
the posterior odds, O(lesion|x), or strength of belief
that a cue generator response x represents a lesion:

Oflesionlx) = P ( l e s i o n l x ) = P(x I lesion) PQesion)
P(lesion|x) P(x | lesion) P(lesion)

That is,
O(lesion|x) = L(x | lesion)O(lesion)

P(x | lesion)
P(x | lesion)

P(lesion)

since is the likelihood ratio,

and
P(lesion)

is the prior odds of finding a lesion.

The likelihood ratio can be calculated from training
data, and enables us to transform cue images into a form
amenable to combination. The prior odds, an estimate
of which can be derived from clinical information, acts
merely as a threshold.

Suppose we have N cue generators, and wish to combine
the (possibly conflicting) evidence they provide. In this

case,
= L(x',x2, ...,xN|lesion)O(lesion)

where xk represents the response of the k-th cue
generator. Assuming independence of the cues,

P(x', x2 , . . . , xN | lesion) = J~J P(xk | lesion) and

We can thus write

N

O(lesion | x1, x2,..., xN) = O(lesion) JJ Uf I lesion)
k = l

i.e. we can combine evidence from our set of cue
generators by computing the product of likelihoods. The
method allows the assimilation of evidence from
additional cue generators without having to recompute,
since

P(x | xN, lesion)
' P(x|xN)

P(lesion|xN,x) = P(lesion|xN)-

where XN are a set of N cue generator responses, and x
is the response of a new cue generator. If we again
assume independence, we see that we can easily include
the new response, since

P(x | xN, lesion) = P(x| lesion) ,

P(x | xN, lesion) = P(x| lesion)

and hence
O(x|xN+1) = O(lesion|xN)L(x|lesion)

EXPERIMENTAL METHOD
Our aim was to demonstrate that this method of cue
combination could indeed lead to greater specificity in
detecting mammographic abnormalities. To this end, we
have carried out an investigation comparing the

Figurel. Digitised 2.5 cm square patch of mam-
mogram showing malignant microcalcifications
(small, bright blobs).
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performance of two cue generation methods with their
combined performance.

A chronological sequence of twenty screening
mammograms was obtained from the Manchester
Breast Screening Service. These were taken
consecutively from the set of those showing
biopsy-proven cancer, for which the biopsy was
performed on account of the presence of
microcalcification. A consultant radiologist selected a
2.5cm by 2.5cm patch of each mammogram, including
in each patch at least one cluster of microcalcifications;
these patches were digitised at 20 pixels per mm (e.g.
figure 1). Two radiologists attempted to identify the
location of the centre of every microcalcification falling
within the selected patches in the original film images.
Microcalcifications were marked by the radiologists with
a fine pen on an acetate overlay. Each acetate was then
registered with the corresponding original image and
digitised. Pen-marks in the digitised acetate images
were detected by thresholding and reduced to a uniform
size. They were then reviewed - and in some cases
edited - by the radiologists, using both film and
magnified digital images to assist in checking their
validity. A total of over 900 individual
microcalcifications were identified in all. The set of
identified abnormalities corresponding to the patch
shown in figure 1 is displayed below in figure 2.

Figure 2. The example image from figure 1 with
microcalcifications identified by a consultant
radiologist highlighted.

As it was our intention to gather on- and off-target cue
generator responses to the identified
microcalcifications, we created a region of interest
(ROI) around each of the marked microcalcification
positions. These were defined such that each ROI would
contain responses to at least one microcalcification, and
that no response to a genuine microcalcification would
appear outside the set of ROIs. Our initial experiments

demonstrated that significant loss in performance could
be caused by lack of care in collecting the training data,
and that the definition of ROIs was problematic because
of the competing requirements to include a reasonably
large area around each microcalcification whilst not
merging ROIs for clustered microcalcifications. Our
current method for defining the ROIs is as follows: we
first associate each pixel with the nearest
microcalcification marker by applying a two-pass
distance transform [9] to the image of
microcalcification markers to produce a a Voronoi
diagram [10]. Voronoi polygons associated with
markers close to the edge of an image are excluded from
all subsequent analyses. We next construct a set of discs,
each centred on a microcalcification marker. The disc
radius is sufficiently large to encompass all cue
generator responses to the underlying
microcalcification; a radius of 16 pixels was used for
these experiments. Each ROI is defined by the
intersection of a Voronoi polygon and its associated
disc. Off-target responses for an image patch are
gathered from the region which is the inverse of the set
of ROIs for that patch.

Figure 3. The Voronoi diagram (white), intersec-
tions of Voronoi polygons with discs centred on
microcalcification markers (light grey), and the
border region excluded from analysis (dark grey).

Two cue generators, selected to respond to different
target features, were applied to each image. These were
the morphological top hat transformation, with a
structuring element of diameter equivalent to 0.6mm in
the original film mammogram, and a morphological
"inner edge" detector (figure 4, (a) and (b)). For each
cue generator, the maximum value within an ROI was
taken to represent the on-target response. All responses
not corresponding to a region of interest (with the
exception of those falling within any Voronoi polygon
associated with a disc near the border of the patch) were
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classified as off-target responses. On- and off-target
distributions of the responses of each cue generator
were collected for all the image patches, and
accumulated across the data set on a leave-one-out
basis. Since these represent P(x|lesion) and P(x|lesion),
we were able to calculate the likelihood ratio and hence
transform cue images into lesion likelihood images.

Figure 4 (a). Output of the morphological top hat
transformation applied to the image shown in fig-
ure 1.

Figure 4(Jo). Morphological edge detector output
for the same example image.

In practice, the dynamic range of the data is such that it
is more convenient to a compute log likelihood images
for each cue generator (figure 4 (c) and (d)). Each
image was transformed using data collected from a

training set comprising the other nineteen images.
Evidence from the two cue methods was then combined
by adding their log likelihood images (figure 5), and the
performance of the combined cue method was
compared with that of the single cue methods.

RESULTS

To assess the performance of the three methods, on-
and off-target data were collected from the two log
likelihood images and from the combined log likelihood
image. These distributions were all scaled to unit area.
True and false positive fractions were computed for
each method by summing responses above the same
threshold on the on- and off-target distributions.These
were computed across the range of thresholds and
plotted as receiver operating characteristic (ROC)
curves [11] in which the percentage of true positive
responses (i.e. the percentage of genuine abnormalities
detected) is shown against the number of false positive
responses per 100cm2, an area comparable with the
area of interest in a typical mammographic film. This
method of expressing the results in terms of a specified
area will allow direct comparison of our results with
those of other authors. ROC curves for the three cue
methods were computed for all twenty images. Data
from all the log likelihood images were also accumulated
to produce a single set of ROC curves relating to the
complete data set (figure 6).

The results of our experiment bear out the theoretical
prediction that enhanced performance can be achieved
by combining evidence. In seventeen out of the twenty
cases, the ROC curves clearly show that combining
information improves on the performance of the
individual cue methods. In two cases, all three methods
performed extremely well, and in the final case results
were inconclusive.

For practical purposes, we are seeking to operate at a
high true positive rate, to detect as many
microcalcifications as possible. However, the benefits of
a high true positive rate will be lost if the number of false
responses is excessive. We must therefore compromise,
and choose an operating point which gives a good true
positive rate with a reasonably small number of false
positives. Taking this into consideration, and examining
the results across the whole data set, we can clearly see
in figure 6 that the performance of the combined cue
method is significantly better than that of either of the
single cue methods.

DISCUSSION

In developing machine-assisted screening methods we
must strive for methods which are both sensitive and
specific, since the consequences of false negative
mammographic interpretation (missed cancers) and
false positive interpretation (traumatic, expensive
investigation) are both serious. Cue combination is one
method by which we can improve on the performance of
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Figure 4(c). The top hat transformation image
shown in figure 4 (a) converted to display the log
likelihood of microcalcification being present
based on on- and off-target distributions ga-
thered from nineteen other top hat images.

Figure 5. The log likelihood image showing com-
bined evidence from the morphological edge de-
tector and the top hat transformation.

Figure 4(d). The morphological edge image
shown in figure 4(b) converted to display the log
likelihood of microcalcification being present
based on on- and off-target distributions ga-
thered from nineteen other morphological edge
images.

individual cue generation methods to detect
mammographic abnormalities.

There are, however, a number of practical problems
associated with this approach to the problem. Firstly,
there is a genuine difficulty in defining true positive
responses in the training data set. Radiologists rarely, in
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Figure 6. Receiver Operating Characteristic
curves for edge cues (dashed line), top hat trans-
formation cues (dotted line) and combined cues
(solid line) using data gathered from twenty
images. The percentage of true positive responses
(detected microcalcifications) is plotted against
the number of false positive responses per
100cm2.

practice, search mammograms (let alone magnified
digital images) for all microcalcifications. The process
of identifying and marking microcalcifications is
tedious, subjective and error-prone; only after a process
of re-examination and refinement was a reasonably



satisfactory solution achieved. Mammograms are
projection images, so individual particles in clusters may
appear to overlap, touch or be closely adjacent. Our
method of defining ROIs, whilst generally satisfactory,
does allow some transfer of responses between very
closely adjacent microcalcifications. We do not,
however, believe that this has significantly affected our
results. Secondly, the selection of the maximum
response within an ROI introduces a bias towards
stronger responses. Thirdly, the data set itself was, of
necessity, biased to show a much larger number of
abnormalities than one would find in an average
screening selection.

We are currently investigating alternative and additional
microcalcification cues. In particular, the examples in
figure 4 illustrate the necessity of the inclusion of a
shape-selective operator to eliminate responses to
streaks of normal breast tissue which are, at present,
detected both by the top hat transformation and by the
morphological edge detector. One of the advantages of
the method we have described is the ease with which
such additional cue information can be assimilated. It is
important to note that this depends on the assumption
that the cue generators are independent. We could
alternatively take any dependency into account, but this
would complicate the assimilation of new evidence.

We have also been investigating methods of cue
generation for spiculated lesions; these appear in
mammograms as foci of radiating linear structure. We
are using a set of measures in Hough transform space
which characterise different properties of star-shaped
patterns of lines [ 12]. Each image point is considered as
a potential focus for a lesion and the measures
characterise the spatial organisation of linear structures
about the point in terms of degree of focus, spread of
directions etc.. These measures are currently stored in
the form of a set of cue maps, which we intend to
combine using an adaptation of the method presented in
this paper.
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