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We describe a stereo algorithm, called Needles, spe-
cialised to deal with smooth textured surfaces. Con-
straints of local surface smoothness and global surface
continuity are used to solve the correspondence problem.
The algorithm is edge based. First the left image is di-
vided into square patches, and a disparity histogram of
the potential edge matches is constructed in each patch.
Above-threshold peaks in the histogram are passed into a
Hough transform, which fits a plane to a subset of the
potential matches lying around the peak, forming local
hypotheses for the range and orientation of the visual
surface along with the edge matches. Next, hypotheses
in adjacent, overlapping patches are connected if they
share enough common matches. A region growing proce-
dure locates large areas of mutually connected hypothe-
ses, corresponding to continuous, possibly overlapping
surfaces. When surfaces overlap, the largest one is cho-
sen. Needles has been implemented on a Sun workstation
and a Transputer network. Results are presented for two
stereopairs, and compared with physical measurements.

In approaches to solving the stereo correspondence prob-
lem in computer vision to date, little explicit attention
has been paid to the special problems posed by highly
textured surfaces. Edge maps associated with such sur-
faces tend to be dense, fragmentary and noisy. These
characteristics make the correspondence problem much
harder to solve than normal. This paper demonstrates
an algorithm, called Needles, which can overcome these
difficulties for smooth surfaces by implementing a strong
form of the smoothness constraint widely used in stereo
algorithms.

One of the advantages of Needles is that it generates a
visual surface description directly as part of the match-
ing process. In many feature-based stereo algorithms,
some species of smoothness is exploited in the form of
mutual support propagated between matches that could
lie on a "smooth" surface. In subsequent surface re-
construction, as proposed by Crimson [5] and Terzopou-
los [15] for example, the information used in the applica-
tion of the smoothness constraint at the matching stage
is then discarded: a thin plate surface is fitted to all
matches whether or not they supported each other. In
contrast, although Needles discards most of the potential
matches by application of a local smoothness constraint,
final matching decisions are postponed until the stage at
which a surface description is selected. Unlike algorithms
that solve the correspondence problem by propagation

of local constraints, such as Barnard and Thomson's [1]
and PMF [11], Needles uses a combination of local and
global constraints, the latter being based on continuous
whole surfaces rather than local patches.

The general approach of integrating matching and sur-
face reconstruction has been used previously, for exam-
ple by Boult and Chen [2] and by Hoff and Ahuja [6].
However, Needles differs in using a global region-growing
procedure to link neighbouring local patches of potential
smooth-surface matches if they share a sufficient num-
ber of matches in their region of overlap. Final disam-
biguation is applied to the continuous surfaces formed
in this way. Like [2] and [6], Needles integrates surface
reconstruction and surface discontinuity detection. The
global disambiguation mechanism distinguishes Needles
from other algorithms that use a locally planar model of
disparity, such as [6] and that of Otto and Chau [10].

THE NEEDLES ALGORITHM
The Needles algorithm is feature based, using at present
edgels produced by the Canny edge detector [4]. It is
assumed that at the scale at which the algorithm is ap-
plied (defined by the image patch size, see below) the
variation of the visual surface from a plane is small rel-
ative to its extent. This assumption provides a very
strong constraint on the possible edge matches. A brief
summary of the algorithm is as follows: one image (the
left) is divided into small square overlapping patches.
In each patch a histogram of the disparities of the po-
tential matches is constructed. Peaks in the histogram
provide hypotheses for the disparity of the visual surface
in the patch. A Hough transform then selects from the
potential matches near each hypothetical disparity a set
of them all of which lie near a plane. The other poten-
tial matches are rejected. Sets of matches from adjacent
image patches that contain enough matches in common
are labelled as connected (i.e. as part of the same sur-
face). A region growing procedure finds large regions of
mutually connected sets of matches. Where regions over-
lap the strongest region (in the sense defined on page 3)
wins, and its matches are selected.

Needles thus uses local (within patch) matching con-
straints to form hypotheses for the visual surface in each
patch. The incorrect hypotheses are eliminated using
global surface connectivity information, i.e. each surface
is located as a whole. Surface smoothness is used in two
ways: a local smoothness constraint to generate local
surface hypotheses, and a surface continuity constraint
to make explicit the connectivity of the local hypotheses.
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Figure 1: The four lateral (left) and four diagonal (right)
neighbours of an image patch. The central patch is
shown in bold. The arrows mark the differences in posi-
tion of the adjacent patches with respect to the central
patch.

Preprocessing
The left image of the stereopair is divided into overlap-
ping square patches of width H = 32 pixels. The patches
are arranged in a grid so that diagonally adjacent patches
overlap by 3/4 of their length in each direction, while lat-
erally adjacent patches overlap in half their area. Each
patch thus has eight neighbours as shown in figure 1. A
simple test on texture density rejects an image patch if
the number of edges within it is less than a threshold1

2H.

The edge positions are rectified to the positions they
would have been in had the camera image planes been
parallel2. This is done using camera parameters obtained
from Tsai's camera calibration method [16]. Edge detec-
tion and rectification take place within AIVRU's TINA-
TOOL stereo vision environment [12]. Corresponding
edges in the two images are now assumed to lie in the
same image raster. Given a pair of edges with recti-
fied positions (x;,t/) and (xr,y), disparity is defined as
d = xr — £/•

Each edge pair lying in the same raster must satisfy five
compatibility conditions in order to be accepted as a po-
tential match. The conditions are:

1. The disparity of the edge pair must lie within a
(large) initial range extending 0.3755 on either side
of the convergent point of the optic axes of the cam-
eras, where s is the size of the image in pixels.

2. The contrasts of the edges are compared. If the
ratio of the larger to the smaller is greater than a
threshold, set at 4, the pair is excluded.

3. Neither edge can have an orientation within 5° of
horizontal. Near horizontal edges give rise to large
disparity measurement errors.

4. The orientation of the edges must be the same side
of horizontal, i.e. an edge marking a boundary be-
tween a light region on the left and a dark region on

1Note: due to lack of space, full explanations are not given for
the values of all the parameters quoted, but they are given in [8].
The quoted values have been found to give good results on all the
images so far tested.

2 This corresponds to a rotation of the cameras about their op-
tical centres to bring the image planes into alignment.

the right can only match with another edge of the
same type. This is an analogue of the contrast sign
rule characterising human vision.

5. Edge orientations correspond to the orientations of
boundaries in the images, which may be due to ob-
ject boundaries, surface texture etc. For a pair of
edges to be matched it must be feasible for the ori-
entations to be projections of a boundary in the
world. Since Needles imposes a disparity gradient
limit on the surfaces it finds (as explained below) it
is reasonable to impose a limit on the disparity gra-
dient of the line in disparity space (x, y, d) formed
by back-projecting the edge orientations. This is set
to 1.

Disparity Histogramming
A local disparity histogram [14] is constructed for each
square patch. The disparity range is divided into blocks
of size 0.2H, and an accumulator assigned to each block.
Each compatible edge pair contributes a vote to the cor-
responding disparity block. The magnitude of the vote
is the wetghi assigned to the left edge of the pair. This is
an integer dependent on the position of the edge within
the square patch. The weighting function is a pyramid
with its peak at the centre of the patch. The weights
are used throughout the algorithm, and the increased
weight assigned to central edges means than matches are
less inclined to congregate on one side of a patch. This
gives rise to more reliable connections between adjacent
patches.

The histogram is smoothed by Gaussian convolution,
using a mask with a = 1.5 blocks. The peaks in the
smoothed histogram are then thresholded. The thresh-
old is set to O.IVF, where W is the sum of the weights of
the left edges in the square patch. Each peak above the
threshold is localised by fitting a quadratic to the his-
togram accumulator values at and on either side of the
peak value. The maximum of the quadratic is taken to
be the disparity at the peak, which is then passed into
the next stage, plane fitting.

Planar Patch Fitting by Hough Transform
Method
The transformation between disparity space and world
space preserves planes. The plane fitting can hence be
done in disparity space. For each peak in the disparity
histogram an attempt is made to fit a plane through the
disparity points lying near the peak. A large number
of these points will be incorrect, so direct fitting, by
least squares for example, would not work. A Hough
transform is used to select a large subset of the points
which lie near a plane. This point set, along with the
plane parameters, constitutes a local surface hypothesis.

For each image patch the origin of the left image coor-
dinate system (x, y) is reset to the centre of the square.
The equation of a plane in disparity space can be written
as

d = ax + by + c (1)

where a, b and c are constant (a and 6 are the disparity
gradients in the x and y directions respectively). For
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a given point (x,y,d), eq. 1 describes a plane in pa-
rameter space (a, 6, c) defining the set of values of a, b
and c that give rise to a plane in disparity space pass-
ing through the point (x, y, d). Points lying on the same
plane in disparity space define planes in parameter space
which meet at a single point. The problem is to find that
point. The standard Hough transform approach is to di-
vide parameter space into blocks in each direction. For
each point (x,y,d), and each block in parameter space
that the plane in eq. 1 passes through, an accumulator
assigned to the block is incremented. At the end the
block whose accumulator that received the most votes is
the best planar fit to the data.

The Fast Hough Transform (FHT)

The above method has two main drawbacks: large mem-
ory requirement and slowness. In order to find the plane
parameters accurately, parameter space must be divided
finely in all three directions, and an accumulator as-
signed to each block. The Fast Hough Transform (FHT)
described in [7] gives considerable speed up and reduces
storage requirement.

The FHT applies to those Hough transform problems
in which the equation relating features to parameters is
linear in the parameters. In this case each feature votes
for a hyperplane in parameter space (a k — 1 dimensional
generalisation of a plane, where k is the dimension of
parameter space). The parameters are scaled so that
their initial ranges form a 'hypercube' (generalisation of
a cube) in parameter space.

A coarse Hough Transform is applied to the initial 'root'
hypercube in parameter space by dividing it into 2k

'child' hypercubes formed by halving the root along each
of the k dimensions and assigning an accumulator to each
child. Each hyperplane passing through a child hyper-
cube contributes a vote to its accumulator. (In fact, a
hyperplane is tested for intersection with a hypercube's
circumscribing 'hypersphere'. This is approximate but is
faster than the exact method.) Those children receiving
greater than a threshold T votes are recursively subdi-
vided, and so on. A limit is set on the level of subdivi-
sion, which is equivalent to setting a required accuracy.

An extra speed up is possible by keeping track of which
features vote for (i.e. which hyperplanes intersect) each
hypercube. Only those features need be tested for inter-
section between hyperplane and child hypercubes, since
children lie inside their parents.

Plane finding using the FHT

In the FHT plane finder, 'hyperplanes' are planes and
'hypercubes' are cubes. The initial range of the parame-
ters are: a: is -0.6 to 0.6. 6: -0.8 to 0.8. c: dpeak - OAH
to rfpeak + OAH where dpeak is the disparity of the peak
in the disparity histogram. The vertical disparity gra-
dient limit b is set larger than the horizontal limit a
because Needles is less sensitive to the shear distortion
between images caused by 6 than the horizontal com-
pression/expansion caused by a, since a shear preserves
the area of an image patch.

The FHT threshold T is set to 0.6W. A lower thresh-
old would allow a fit to a smaller number of points, but
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would slow the algorithm down. The value 0.6W^ has
been suitable for all the stereopairs so far tested. Nor-
malising T using W is justified since one edge can only
contribute one vote to the winning hypercube (this is
proved in [8]), so that the value of T used implies that
at least 60% of the edges in a left image patch must be
matched.

Region Formation and Hypothesis Disam-
biguation
The next step is to join surface hypotheses in adjacent
image patches if the two surfaces agree in their area of
overlap. The test is based on the number of common
matches in the sets of matches selected by the FHT. If
this is > 5, the hypotheses are labelled as connected.
When one hypothesis could be connected to several hy-
potheses in the same patch, the one with the best planar
fit is chosen, i.e. the one reaching the highest subdivision
level in the FHT, or failing that the FHT accumulator
values are compared.

A region growing process now explicitly labels regions
of connected hypotheses. Each hypothesis becomes part
of a numbered region. Hypothesis disambiguation then
eliminates all but one of the surface hypotheses in each
patch, with the set of remaining hypotheses assumed to
be true representations of the visual surface. Discontinu-
ities are located implicitly at the boundaries of regions.
The stages are interleaved in the following way:

1. First region growing s tage. Regions of con-
nected hypotheses are grown by taking those hy-
potheses that are connected to neighbours in all
eight (lateral and diagonal) directions as 'seeds',
which grow into the network of hypotheses along
their connections. Such hypotheses are used in de-
scending order of the goodness of the planar fits. A
seeded region expands breadth-first along the eight
connection directions.

2. Hypothesis disambiguation. Competition be-
tween hypotheses in an image patch is resolved ac-
cording to the 'strength' 5 of a region, calculated by
summing the FHT subdivision levels of all the hy-
potheses in the region. Hence region strength repre-
sents the area of the region and the strength of the
hypotheses within it. In each patch, the surface hy-
pothesis belonging to the region of highest strength
is declared the winning hypothesis in the patch. Hy-
potheses not part of any region are rejected.

3. Second region growing s tage. Connections to
hypotheses eliminated at the previous step are re-
moved, and all region data is nullified. The region
growing step 1 is then repeated. This is necessary
because step 2 may split a region into two parts,
still wrongly labelled as the same region.

4. Elimination of weak regions. The strengths of
all the regions are recalculated. Those regions whose
strength 5 falls below a threshold (20) are removed.
This is designed to eliminate only very small regions.

Each continuous textured surface in the scene should be
represented as a single region. Boundaries of a region



should correspond to boundaries of the surface, e.g. step
discontinuities, object boundaries. Note that a region
may contain a step discontinuity if a connection route
exists around it.

Least Squares Plane Fitting
The final stage in the Needles algorithm is to obtain
more precise estimates of the local plane surface param-
eters than the quantised values obtained from the FHT
plane finder. For the winning hypothesis in each patch,
orthogonal regression is used to fit a plane to the dis-
parity points that contributed to the winning plane in
the FHT, minimising the sum of the squared perpen-
dicular distances of the disparity points from the plane.
Mathematical details are given in [13].

PARALLEL IMPLEMENTATION
The most time consuming parts of Needles take place
independently in each image patch. The only non-local
steps are region growing and final disambiguation, which
take very little time. There is therefore great scope for
using parallel processing to increase efficiency. Needles
has been implemented on the MARVIN Transputer ar-
chitecture developed in AIVRU, which is described in [3].
Using a nine Transputer system gives approximately an
eight-fold decrease in running time over a Sun 3/60.
Since one processor could in theory be assigned to each
image patch, this is clearly a limited parallel implemen-
tation of Needles.

RESULTS
We present results for two steropairs. The first is of
a human face model, shown in figure 2. The face has
been fixed to a backplate, painted white and dotted us-
ing a black pen to introduce texture. The images are
512 x 512 pixels, each pixel having a grey value between
0 and 255. Figure 3 shows the orientations of the local
planar patches found by the Needles algorithm, shown
superimposed on the left image. Each pin is centred on
the centre of an image patch. The needles (hence the
name) point in the direction of the surface normal in
the world. The surface of the face is shown in figure 4,
plotted in world space. This was constructed by fitting
a surface to the edge disparity points.

We have compared measurements of the face produced
by Needles with height measurements of the face above
the backplate made along cross-sections using a clock
gauge. Both sets of measurements were relative to fixed
axes marked on the backplate. The results are shown in
graphs A to K of figure 5, representing the positions on
the face shown in figure 4. Solid squares mark the clock
gauge data, outlined squares the Needles data. Gaps in
the clock gauge data represent places where the slope was
too steep for an accurate measurement to be made. Sub-
millimetre accuracy has been achieved over large parts
of most of the cross-sections, corresponding to sub-pixel
accuracy in disparity. The large errors in graphs B, E
and I seem to be caused by prominent surface features
which are smoothed over by Needles, such as the eyes
(E) and mouth (I).

The second stereopair, shown in figure 6, contains six

more or less textured objects. The images are again
512 x 512 pixels. Figure 7 shows the planar surface nor-
mals found by Needles. Needles segmented the scene into
the separate objects, in particular finding the discontinu-
ity between the lego house and the telephone directory.
The surfaces of the objects are shown in figure 8.

CONCLUSION
We have implemented a stereo algorithm designed for
smooth textured surfaces. It uses a local surface smooth-
ness constraint and a novel global disambiguation mech-
anism that locates each surface as a whole. The algo-
rithm has been implemented on a Sun and a network
of Transputers. Extensions that have been made to the
algorithm include crease discontinuity detection and cal-
culation of surface curvature. These will be described
in [8].

In [9] we compare the matching results from Needles with
those obtained using the PMF algorithm [11], a more
general-purpose algorithm incorporating a less power-
ful smoothness constraint, a limit on disparity gradient.
For images of densely textured surfaces with many sim-
ilar features, such as the head stereopair, we find that
the severe matching ambiguity problems cause PMF to
make occasional matching errors. Since PMF is about
two magnitudes faster than Needles, an obvious future
research direction is to try to incorporate the speed of
PMF and the surface smoothness of Needles, to take ad-
vantage of both.
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Figure 2: Stereopair of head model. y~ «i f >T n n mijj

nlanar surface normals found by Needles algorithm.

K

Figure 4: Surface of head.
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Rgure 6: Stereopair of six textured objects.

G

II n

T • 'aa

n ri in ?n ?r, nn ar, -.n i s r,n 55 BH E 5 ?n 75 00

Distance along cross-section (mm).

Left

''. vr-J- *
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