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The aim of this work is to find out whether the grey level
symmetric axis transform ( SAT) is a useful grey level
shape description for finding the salient cavities in
echocardiograms. The centres of the maximal discs of
the grey level SAT are calculated using mathematical
morphology as described by Peleg and Rosenfeld, and
these centres are grouped to form symmetry surfaces.
These surfaces are described as a graph in which each
vertex has associated with it a description of a path from
the top to the bottom of a symmetry surface, and two
vertices are connected if their two paths are adjacent.
The subgraphs of this graph which correspond to the
salient cavities in the image are found by growing
subgraphs from seed vertices. Finally, the boundaries of
the cavities are reconstructed from these subgraphs.
Our initial results are promising, although further work
is needed to make the method more robust.

The work described in this paper was done as part of
the cardiac subgroup of the Alvey project MMI-134:
Model Based Processing of Radiological Images. The
aim of this subgroup is to automatically locate the
boundaries of the left ventricle in time sequences of
images generated by both ultrasound and MRI, although
in this paper we only consider ultrasound images. The
motivation for this is that the performance of the left
ventricle can be quantified from these boundaries, but
that tracing the boundaries manually is time consuming.
A review of quantitation in echocardiography is given by
Skorton and Collins [ 1 ]. An example of an
echocardiogram showing an apical four chamber view of
the heart is shown in Fig 1.

Nearly all the existing computer aided methods for
finding the boundaries of the left ventricle rely on an
operator pointing to the centre of the left ventricle or
drawing its boundary in at least one of the time frames.
We have decided to do this automatically by finding the
main features in the image, and then matching these to a
model.

The cavities are amongst the main features in the
images, and some these correspond to the heart
chambers. The grey level symmetric axis transform
( SAT ) would seem to be a useful grey level shape
description for finding the salient cavities in the image
since it makes the depth of the cavities explicit. Many of
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Figure 1. An example of a four chamber apical view
which has been averaged over a heart cycle,
(a) 256 x 256 image, (b) schematic diagram.

the methods which have been described for using the
SAT to segment images have segmented the SAT at its
branch points [ 2,3,4 ]. However this often results in
subparts which are not particularly intuitive, and we do
not use this procedure.

THE GREY LEVEL SAT

A number of ways of generalising the binary SAT to grey
level images have been suggested, and we have used the
one due to Peleg and Rosenfeld [ 5 ]. In the binary case,
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Figure 2. An example of a grey level SAT. (a)
a grey level cavity which has the shape of
a square pyramid, (b) the symmetry
surfaces of the cavity, (c) the surface paths
on the symmetry surfaces, (d) the gsat
graph

the SAT of either the image or the complement of the
image can be calculated. Similarly in the grey level case,
one can calculate the grey level SAT of either the three
dimensional region below the surface defined by the
grey level function, or the region above the surface. The
grey level SAT of the region above/below the surface is
the locus of the centres of the maximal discs whose
plane is perpendicular to the grey level axis, and which
are included in the region above/below the surface,
together with their radii. In the remainder of this paper
we consider the description of the region above the
surface, and refer to it as simply the grey level SAT.

The locus of the centres of the maximal discs forms a
number of symmetry surfaces. Figs 2a and 2b show a
grey level cavity which has the shape of a square
pyramid, and the the symmetry surfaces of its grey level
SAT. There are a number of ways in which these
surfaces could be described, and we have chosen to
describe them as an undirected graph, which we call a
gsat graph. Each vertex has associated with it a
description of a path from the top to the bottom of a
symmetry surface, and we refer to the these paths as
surface paths. Two vertices are connected if their
surface paths are adjacent. The surface paths and the
gsat graph of the grey level SAT in Fig 2b are shown in
Figs 2c and 2d respectively. For each surface path we
calculate the following parameters which are used for
finding the cavities:

a) average spatial position
b) average radius of the maximal discs
c) difference in grey level between the top and the

bottom of the path
d) grey level of the bottom of the path

In the diagrams of gsat graphs in this paper, the position
of each vertex is the average spatial position of the
associated surface path.

In general each surface path takes the route of steepest
descent from the top to the bottom of the symmetry
surface so that the path, and hence its description of the
surface, is as spatially localised as possible. However this
causes the gsat graph to be unnecessarily complicated at
the intersections of surfaces if the intersection is not
parallel to the grey level axis. An example of such an
intersection together with its gsat graph is shown in Figs
3a and 3b. A solution is to relax the steepest descent
requirement at intersections and in their immediate
vicinity. The modified surface paths and gsat graph are
shown in Figs 3c and 3d.

It is also desirable to segment some of the surface paths.
This is most easily seen by considering the grey level
SAT of a one dimensional grey level function. Fig 4a
shows a function which is a valley which is made up of
two parts which have different widths, together with the
grey level SAT which consists of one axis. ( An axis in
the one dimensional case corresponds to a surface path
in the two dimensional case.) It is useful for each of the
two parts of the valley to have its own axis, and so the
axis has to be segmented. The function dg/dr against r
for the axis is shown in Fig 4b, where r is the radius of

152



( a ) ( c )

( b ) ( d )

Figure 3. Surface paths at the intersections of surfaces. If the
surface paths take the route of steepest descent as in (a),
then the resulting gsat graph (b) is unnecessarily
complicated. If the steepest descent requirement is relaxed
in the vicinity of the intersection (c), then the gsat graph
(d) is simplified.

a)

dg/dr

( b ) r

Figure 4. Segmentation of the axes
of symmetry of a one
dimensional grey level
function, (a) A valley which
consists of two distinct parts,
but which has one axis, (b)
The function dg/dr against r
for the axis in (a). The axis
is segmented at the value of r
at which there is a significant
minimum.

the maximal disc. It can be seen that the axes should be
segmented at significant minima in this function.

A standard way of describing the binary SAT is a graph,
in which each vertex has associated with it a position,
and a radius. Thus our description of the grey level SAT
is similar except that each vertex has more parameters
associated with it. However, the symmetry surfaces can
cross over each other, so unlike the binary case, the gsat
graph can cross over itself.

CALCULATION OF THE GREY LEVEL SAT

The existing methods for calculating the grey level SAT
as defined above are as follows:

a) Peleg and Rosenfeld[ 5 ] generalised the
standard morphological method for calculating
the centres of the maximal discs in binary images
so that the method worked on grey level images.
However they didn't group the centres together
to form symmetry surfaces.

b) Gauch and Pizer[ 4 ] used an active surface
model to calculate the grey level SAT. This
method seems to ensure spatial connectivity at
the expense of being only an approximation to
the grey level SAT. In particular it is not clear
how this method can cope with the places where
symmetry surfaces cross over each other. It is also
computationally expensive.

c) Toet[ 6 ] has described a method for grouping
together the maximal discs calculated using Peleg
and Rosenfeld's method. The method is fully
described for one dimensional functions, but
unfortunately the extension to two dimensions is

not adequately described, and the only result is
an artificial test image.

Our method for calculating the grey level SAT consists
of calculating the centres of the maximal discs using
Peleg and Rosenfeld's method, and then grouping these
together to form surface paths. A detailed description of
this method is given in an internal Alvey report [ 7 ],
and an outline of the method is as follows:

a) The original 256 x 256 image is reduced to a 64 x
64 image by Gaussian filtering and subsampling.

b) The centres of the maximal discs of the image are
calculated using Peleg and Rosenfeld's method:

- ( / © « ) • - ( / ) = 0...N

where f is the grey level function, SK(f) is the nth

subset of the SAT (that is the number of maximal
discs of size n at each spatial position ), and B is
the structuring element. The more circular the
structuring element, the better the approximation
to the continuous SAT. By using linear
interpolation we use a dodecagonal structuring
element and find this gives better results than an
octagonal one.

Each subset is grey level thinned using the
algorithm of Goetcherian[ 8 ], so that the
symmetry surfaces are only one pixel thick,

d) Each subset is represented as an undirected
graph, which we call a subset graph. For each
non-zero pixel in the thinned subset there is a
vertex, and the connectivity of the vertices is the
same as the 8-connectivity of the pixels in the
image.

c)
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Figure 5. Growing a subgraph, (a) A gsat graph.
For each of the vertices a, b and c, a dashed
circle is shown which has the average radius
of the vertex, (b) The subgraph which is
being grown.

e) The vertices in the subset graphs are linked
together to form surface paths which each go
from the top to the bottom of a symmetry surface.
These paths take the route of steepest descent,
except at the intersections of surfaces, as
discussed in the previous section.

f) Some of the surface paths are segmented.

g) The gsat graph is constructed from these paths.
Two gsat vertices are connected if any subset
vertex in one path is connected in a subset graph
to a subset vertex in the other path.

h) For each path we calculate the following
parameters which will be used for the
segmentation described in the next section: the
average position; the average radius; the
difference in grey levels between the top and the
bottom of the path; the grey level of the bottom of
the path.

FINDING THE BOUNDARIES OF THE
SALIENT CAVITIES

The boundaries of the salient cavities of the image are
obtained by finding the subgraphs of the gsat graph
which correspond to these cavities, and then
reconstructing the boundaries from these subgraphs.

path r
path q

Figure 6. The compatibility of two vertices

Our method has the following desirable behaviour when
an image is scaled:

a) If the grey levels of the image are scaled, then the
shape and size of the cavities remain constant.

b) If the image is spatially scaled, then the shapes of
the cavities remain constant, and their sizes are
scaled.

The method for finding the subgraphs of the gsat graph
which correspond to the salient cavities consists of two
parts: select a seed vertex; grow a subgraph from this
vertex. This is repeated to find as many cavities as are
required.

The seed vertex is selected by finding the vertex in the
gsat graph which has not already been used for a
subgraph, and which has the highest value of the
difference in grey level between the top and the bottom
of the surface path.

At the edges of a cavity, the grey levels of the bottoms of
the symmetry surfaces increase, and it is this increase in
grey level which we use to determine when to stop
growing the subgraph. More precisely, the subgraph
initially consists of the seed vertex, and a vertex is added
to the subgraph if the following conditions are met:

a) it has not already been used for a subgraph.
b) it is connected in the main graph to a vertex

which is already part of the subgraph. We will
refer to this vertex as vertex c.

c) it is compatible with the subgraph.
Condition b) is illustrated in Fig 5, where the vertex q is
connected to vertex c, which is already part of the
subgraph being grown.

The compatibility of a vertex q with a subgraph is
defined in two parts as follows. Firstly vertex q is
compatible with the vertex r if:

gnJ.9) - SmtaW < threshM

where ft™ is the grey level of the bottom of a surface
path, and Ag is the difference in grey level between the
top and the bottom of a surface path ( see Fig 6 ).

Secondly, let T be the set of vertices such that each
vertex is a member of the subgraph, and the distance
between it and vertex q is less than the average radius of
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Figure 7. A symmetry surface which divides into
an upper and a lower surface.

the vertex. In Fig 5 the subgraph being grown contains
the vertices a,b and c and for each of these vertices a
circle is shown which has the average radius of the
vertex. The set T consists of the vertices b and c, since
the vertex q lies within the radii of the vertices b and c,
but not a.

Combining the two parts, vertex q is compatible with the
subgraph if it is compatible with all the vertices in the set
T. The first part of the definition of compatibility
involves a threshold. As this threshold is increased the
subgraphs in general gradually expand, and at certain
values pairs of subgraphs merge. It may be necessary to
run the method at a number of values of the threshold,
and for some higher level reasoning to decide which
threshold produces the most meaningful cavities. We
currently use a threshold of about 0.4.

If a vertex q fulfils the conditions a) and b) above, but is
not compatible with the subgraph, then that vertex and
some of the neighbouring vertices are labelled so that
they are not used for future subgraphs. This is done to
prevent subsequent subgraphs from getting too close to
previous subgraphs, and to stop vertices at the edge of
this cavity being chosen as seed vertices. The labelled
vertices are those that lie within the average radius of
vertex c ( defined in condition b) ), and which can be
reached from vertex q by a path which has
monotonically increasing values of the grey level of the
bottom of the surface path.

A complication arises at places where a symmetry
surfaces surface divides into an upper and a lower
surface. An example of this is shown in Fig 7. The upper
and lower surfaces describe two different cavities, the
lower one lying inside the upper one. The implications
for growing subgraphs are firstly that a subgraph cannot
contain both vertices on the upper surface and vertices
on the lower surface. Secondly, if the subgraph has
grown along the main surface and has reached the path
where the surface divides, the compatibility rule defined
above may well prevent the surface from growing any
further. We do not think that it is possible to decide at
this low level whether or not the surface should continue
to grow, and so we generate three options, and leave the
decision to some higher level reasoning. The three
options are:
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a) Use the definition of compatibility defined above.
b) Grow along the lower surface, but restrict the set

of vertices T to being on the lower surface.
c) Grow along the upper surface, but restrict the set

of vertices T to being on the upper surface.

From each subgraph we reconstruct the boundary of the
cavity as follows. For each vertex on the subgraph a
filled circle is drawn which has the average radius of the
vertex, and a centre at the average position of the
vertex. Then the boundary of the cavity is the boundary
of the region formed by the union of these circles.

RESULTS

We have applied the above method to only a small
number of echocardiograms, and so it is not possible to
give a reliable assessment of its performance. The grey
level SAT of the image in Fig la is shown in Fig 8, where
(a) shows the gsat graph superimposed on the original
image, the position of each vertex being the average
spatial position of the associated surface path, and (b),
(c) and (d) show the values of the other parameters
which describe the surface paths. The boundaries of the
5 most salient cavities which were found by the method
described above are shown in Fig 9. It can be seen that
by reference to Fig lb that 4 of the 5 cavities correspond
to cardiac chambers.

The method is implemented in a mixture of Pascal and
C, and takes about one minute on a Sun 3/160.

CONCLUSIONS

Our initial results have shown that the grey level SAT is a
useful image description for finding the salient cavities in
echocardiograms, but that further work is needed to
make the method more robust. We have found that,
unlike the binary case, ensuring the spatial connectivity
of the grey level SAT is not the major problem, but that
segmenting the surface paths is an area of greater
difficulty, and needs further work.
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