
An Associative Processor Array
Designed for Computer Vision

A.W.G. Duller R.H. Storer A.R. Thomson M.R. Pout E.L. Dagless

Dept. of Electrical and Electronic Engineering
University of Bristol

Bristol BS8 1TR, UK.

The architecture of a new associative processor ar-
ray chip, GLiTCH, is outlined. The suitability of
such arrays for image processing and computer vi-
sion work is stressed, and a general purpose vision
processing module, currently being designed, is de-
scribed. Effective programming of bit-serial procssor
arrays requires an efficient library of low-level rou-
tines, especially for operations such as data routing
and multi-bit arithmetic. The current state of a
number of these primitive operations is described and
they are used to solve two image processing tasks.

The use of processor arrays for vision processing is
now well established, see [3] for example, and mapping
one pixel of a low level image to each processor in a
large processor array is an obvious way of utilizing very
large scale fine-grained parallelism. Due to the general
regularity of SIMD (Single Instruction Multiple Data)
arrays they are ideal for VLSI design. The work to
be described has as its long term goal a system which
will allow associative processor arrays to be defined,
simulated and then produced in silicon automatically
from the high level definition data. In this way the
design cycle time for processor arrays could be reduced
to the point where application specific designs could be
fabricated to solve a particular problem. The research
that is described in this paper is the preliminary work
that is required to achieve such a goal. At present the
results consist of the basic simulation tools, VLSI designs
and a test chip which is about to be manufactured.

We begin with a general discussion of associative
processors and their use of content-addressable memory.
The design decisions that have been taken to produce
the current implementation are explained. The position
of associative processors in a taxonomy of processors is
explained and the innovations that have been made to
the associative processor array concept are outlined.

The most effective use of processor arrays requires
an efficient library of routines to perform low-level
operations. The operations considered in this paper
are generalised data movement routines and reduction
type functions which produce single results from an
array of data. The multi-bit arithmetic functions
are not considered but are available in the current
simulation system. The importance of these library

Subset Pattern Pos Pattern Pos Instruct ion

'16 ]'6 K16 Ĵ e j'10 \°q

Image In

J T_

T T T T
PBL

64-bit CAM
4-bit
subset]
CAM

Processo

i I

Shift
Registe

Reply
T0a Image Out

Figure 1: Floorplan of a GLiTCH chip

routines is demonstrated by their impact on two image
processing applications: histogramming and convolution
with Laplacian of Gaussian (LoG) operators of varying
sizes. It is shown that even for low-level tasks such as
these highly efficient solutions can be acheived.

Finally a list of applications is given which have been
implemented on the current GLiTCH simulation.

ASSOCIATIVE PROCESSOR ARRAYS
In common with most fine-grain SIMD architectures,
associative processor arrays (APA) [7] contain a large
number of simple processing elements (PEs) executing
instructions broadcast from a single controller. APAs
are distinguished from other SIMD arrays by the type
of local memory linked to each processor. In an APA
content addressable memory (CAM) is used which means
that individual PEs are identified by the contents, or
part of the contents, of their local memory rather than
by a co-ordinate system which specifies their physical
location [8]. In a content addressable memory, such as
those used in page translation tables or cache systems,
only the first data item matched is returned to the host
processor. However, in an APA each row of CAM has a
processor connected to it which allows all of the matched
data items to be processed in parallel. A qualifying
pattern is broadcast by the controller, to identify a
subset of PEs which obey the instructions that follow.
In addition writing data back to local memory can be
performed several bits at a time.

233



SIMD architectures such as the DAP [9], are sometimes
termed Logic in Memory Arrays, since the total
processing power of the machine is distributed through
the total memory; each processor using its own RAM
for local storage. This type of architecture increases
the memory access bandwidth by widening the data
path. The use of CAM in each PE increases the memory
access bandwidth further by improving their access time
to local memory, in a similar way to cache memory
in a uniprocessor system. In an APA the processing
power is further distributed by placing the matching
logic within the memory cells themselves. The result is
that each PE can 'fetch' two one-bit arguments and add
them in a single machine cycle. For searching functions
the advantage is obvious, since a search for a multi-bit
argument also takes only one cycle.

Since VLSI CAM is larger and consumes more power
than RAM it is quite clear that with currently
conceivable technology the amount of CAM that could
be accessed directly by each PE is likely to remain
insufficient, on its own, for many applications. This is
especially true for the complex vision processing tasks
that make use of large databases, or high precision
arithmetic computation. Thus the use of a combination
of RAM and CAM in each processor in the way described
above is one way of producing machines capable of rapid
execution of these tasks.

THE GLiTCH CHIP DESIGN
GLiTCH (Goes Like The Clappers, Hopefully) is an
APA designed for computer vision (see Figure 1). A
VLSI design means that a large number of PEs can be
made available cheaply on a single chip. However, this
can mean that a large number of pins are needed to avoid
a data transfer bottleneck at the chip boundary.

The current design of GLiTCH took the following factors
into consider at ion :-

• The number and complexity of the processing
elements determine the range of algorithms that can
be implemented.

• Processing elements need to communicate with each
other; the most efficient interconnection scheme in
terms of bandwidth conflicts with the need for high
packing density and reasonable pin count.

• Input and output of the array data must not be a
limiting factor on performance.

• The design has to be testable.

The factors listed above are conflicting, and so some form
of compromise had to be reached.

The use of a large number of single-bit processing
elements is attractive since it allows flexibility in the
precision of the data used in any computation. In
addition 'clever' algorithms for arithmetic routines such
as square root and logarithm can compute results a single
bit at a time [4].

Output
Framestor*

LiTCH chip I I CLiTCH chip I I CLiTCH chip I I GLiTCH chip I

Data Routing Network

i Scalar register I

y 16

J

Host

Dale Store

16 Ciqil ternary

Figure 2: A GLiTCH based vision system

As images are two dimensional, processor arrays for
image processing are often mesh connected, each
processor directly connected to its 4, 6 or 8 immediate
neighbours. Unfortunately, closely packed processing
elements and a limited number of pins to a chip package
mean that complex interconnection schemes become
difficult to implement. For N2 PEs on a chip, 4N pins
are required for a 4-connected mesh. Furthermore, the
mesh chosen may not be the optimum connectivity for
all the problems the machine is applied to.

The adopted solution for GLiTCH (more details of the
design decisions taken can be found in [1]) acheives a
high PE density and low pin count by connecting the
processing elements only in one dimension. By having a
barrel shift mechanism built into the CAM array, any 4,
6 or 8 connected mesh can be simulated within the chip,
a single bit is passed between any virtual neighbours in
one to three machine cycles.

The initial GLiTCH chips will contain 64 processing
elements, each with 68 bits of local CAM. Similar chips
with more PEs are possible without increasing the pin
count.

The data input and output problem is alleviated by
threading a data shift register through all of the
processing elements (see below). In this way data I/O
can be performed in parallel with computation.

Because of the regularity of the structures required by an
APA the design cycle has been relatively short compared
with that of a uniprocessor of similar dimensions.
Designing future APA's targetted at specific applications
should be even faster since the basic cells are already
available.

A GLiTCH BASED VISION SYSTEM
A computer vision system based on the GLiTCH
chip will consist of an array of chips with supporting
hardware, as shown in figure 2. Any number of GLiTCH
chips can be connected in a linear array.

Threaded through the array is the 8-bit data shift
register (DSR) which brings digitised video or other
array data from an input framestore and takes processed

234



array data to the output framestore. The DSR can
perform this operation while the PEs are processing a
previously loaded section of the array data. Only 16
machine cycles are then needed to exchange the data in
the DSR with 8 bits from each PE's CAM.

Program instructions for the chips from a microcode
store are delivered by an instruction sequencer which
also provides addresses for program data (match and
write patterns) in the 32 bit wide data store and may
branch on the outcome of a number of condition flags
collected from the processor array.

Scalar processing is provided by a host transputer which
can transfer data to and from the program data stores.
A scalar register can shift and test a scalar value
from the program data store for scalar-vector arithmetic
operations.

At present the transputer is acting only as a convenient
building block which allows a collection of GLiTCH
chips to be controlled. However, as is shown in figure
3 the vision module that will eventually be developed
is one that has a dedicated controller dealing with
the GLiTCH. The transputer in the system enables a
number of these modules to be easily linked to allow
the dissemination of results to a global processor or
to neighbouring modules. In this way it is envisioned
that low and intermediate level image processing will be
performed in the vision module using Inmos A110 chips
and GLiTCH arrays. The data from these modules can
then be passed to a global processor which allows the
integration of results. The higher level modules may also
include GLiTCH arrays since there is evidence that the
architecture can perform maximal join graph matching
efficiently.

Inter-chip Data Routing
Between each chip and its neighbours is a custom
routing/support chip controlling a 32 bit inter-chip data
path which allows fast transfer of tag bits between
distant PEs: a system with 16 GLiTCH chips moves
16 x 32 bits of data per 50ns machine cycle, or a
data movement bandwidth of 1.28 Gigabytes per second.
When used with the chip's internal barrel shifter, this
helps to offset the disadvantages of ID connectivity.

Note that there is no degradation in data movement
bandwidth as the number of PEs per chip increases,
because the distance (in terms of chips) the data has
to move in one cycle will decrease proportionately.

Other logic in the support chip identifies the one
chip in the array which is producing data during a
read operation providing efficient 'random access' of
information in the array [10].

It is possible to attach RAM to each support chip which
can then be used as secondary store for the GLiTCH
chips, CAM data can be temporarily transfered to this
RAM to make room for higher resolution processing
within the PEs. A full-custom or semi-custom routing
chip including fast RAM may be developed in the future.

LOW LEVEL OPERATIONS
To enable algorithms to be evaluated for the GLiTCH
architecture a simulation system has been written which
allows array modules containing variable numbers of
PEs. A library of routines is being developed, including
data movement, multi-bit integer and floating point
arithmetic and reduction operators, which facilitates
the efficient description of algorithms at a level above
assembly language.

The most obvious disadvantage with a linear array
of processing elements is the low communication
bandwidth between distant PEs. To some extent with
the GLiTCH architecture this problem is reduced by the
provision of the barrel shifting mechanism. However,
for some basic algorithms there can still be a large
disparity between the amount of data routing that has
to be performed and the amount of computation. Data
routing has to be seen as an overhead in this kind of
architecture. For this reason, reduction operators and
general data movement algorithms are considered below.

Reduction operators, those that take an array as
input and produce a result which is of reduced rank,
by their nature make poor use of processor arrays
in general. Examples of reduction operators are
summation, maximum, minimum, first non zero in an
array etc. The first non zero in an array is catered for
by a hardware network and there is no reason to explore
this further. Operations such as max or min can easily
be performed using a number of match cycles and are
considered trivial.

Summation Operators
Assuming that one value is resident in each PE,
"cascaded addition" can be used to perform the
addition. The operation at the jth stage of the
computation is to shift the current result vector by 2^~^
processing elements and then to perform a component
by component addition between the unshifted and
shifted vectors. This results in the required sum being
accumulated in a time

O(log2(A0).

This result assumes that there are at least N processors
available to perform the calculation. For 32-bit data
values and varying numbers of GLiTCH chips the results
are as follows.

System size
(chips)

4
16
64

512
1024

Processing
time (ms)
0.04 (44%)
0.05 (33%)
0.06 (18%)
0.075 (4%)
0.08 (2%)

Communication
time (ms)
0.05 (56%)
0.10 (67%)
0.27 (82%)
1.72 (96%)
3.37 (98%)

The results show that the ratio of processing time to
data routing time is extremely poor which suggests that
improvements can be made to the algorithm. The first
algorithm investigated is similar to that used on DAP

235



Video in

Video input
stream
control

1
A1 10

low level
processor

• II
GLiTCH

processor
array

I

Video output
stream
control

i

^ — "
Scalar

processor
& controller

i
i

i T
Module
control

(transputer^

J CO
i
i

i

--h
i

L ^

! • -

n m

1 ^ >
Module

unications

Video out
Figure 8: Vision processing module

for summation [4]. The basic idea is to halve the length
of each operand in the sum at each stage, dividing
the computation between more and more PEs. This
counteracts the reduction in the number of utilised PEs
due to the cascaded addition. Finally, each PE contains
only one bit of the partial results and the rest of the
computation is achieved by parallel additions and carry
propagations between PEs. The strategy for acheiving
this is important, since some methods result in the bits
of the final value having to be collected from over the
entire array. An efficient version of this method gives
the following execution times.

System size
(chips)

4
16
64
512
1024

Processing
time (ms)

0.023 (61%)
0.044 (64%)
0.033 (61%)
0.041 (38%)
0.044 (27%)

Communic ation
time (ms)

0.015 (39%)
0.016 (36%)
0.021 (39%)
0.067 (62%)
0.118 (73%)

Using similar techniques other routines are possible
for summing a single bit column or several single bit
columns. If several bit columns are to be summed
independently then the computation can be spread out
over the available PEs; an application of this is the
histogram algorithm described in a later section.

Data Movement Routines
It has been mentioned that the time spent in routing
data between PEs is an overhead that must be
minimised. The theory of data routing put forward by
Flanders [6] allows regular routing to be performed easily
by denning the routing in terms of a mapping vector

which manipulates the addresses of the data items. The
implementation of these changes to the mapping vector
can be broken down into two operations; one which
swaps two bits of the mapping vector, the other which
inverts a single bit.

To implement these on GLiTCH required only selected
shifting operations to be performed. These have been
written and are in the process of being optimised for the
architecture.

LAPLACIAN OF GAUSSIANS
FILTERING
The use of Laplacian of Gaussian filtering (LoG) for edge
detection is known to require the use of large masks, i.e
31x31. Huertas and Medioni [5] have shown that the 2-D
LoG mask could be decomposed into two 1-D masks with
a corresponding reduction in the amount of computation.
In addition the resulting masks are symmetric which
allows a greater reduction in the computation.

Two methods for implementing LoG masks have been
used. Both methods use the symmetry of the masks
by multiplying the mask weight by each pixel and then
shift-accumulating in both directions.

The first method loads the image into the array in
row order and for the row mask the shifts required are
O(mask_size/2). For the column mask the shift lengths
become O(patch.size * mask.size/2).

In order to reduce the shifting required for larger masks
another method was considered which again loaded the
image in row order. However, before the column mask
is applied the data reordering algorithms are applied to
produce the data in column order. This allows relatively
short shifts to be used for the column mask. The results

236



Time per patch (ms)

2.5

20

Mask Size

Figure 4- Execution times for 64 chips - solid line —
shifting, dotted line = data rearrangement

must then be reordered to row ordering (although this
may be achieved automatically when the data is read
out into the framestore). The results show (see figures
4 and 5) that the shifting method executes faster for all
but the largest masks considered. This is because the
time required for the row to column ordering transition
remains a constant overhead irrespective of the mask
size.

For both methods the zero crossings are obtained using
the predicates suggested in [5], which only requires
communications with the eight nearest neighbours. The
predicate matching can be performed using multi-bit
matches which each require a single clock cycle.

HISTOGRAMMING
Two methods of performing this operation have been
considered. The first is to assign each bin of the
histogram to a PE. The PEs are labelled with the pixel
value of the bin which they accumulate. The image is
held external to the array and each pixel is sequentially
matched against the field containing the label of each
bin. This match can be performed in a single clock
cycle by the associative memory. The PE that has been
marked then increments its histogram field. After O(N2)
operations the histogram resides in the array, one bin per
PE. This is not very efficient since incrementing the bins
takes a large number of cycles compared to the matching
and is not a parallel operation as it occurs in only one
PE. A simple extension is to distribute each bin over a
number of neighbouring PEs, the PEs associated with
a particular bin being distinguished by marking them
with different patterns in their subset CAM. In this way
several pixels can be matched before the increment stage
is performed. For a 16 chip system this requires sa 15ms.
This time is data dependent.

Time per patch (ms)

1.6

10 15 20 25

Mask Size

Figure 5: Execution times for 16 chips - solid line =
shifting, dotted line = data rearrangement

The second method uses one of the primitive summation
operators and operates on a patch of the image at a time.
The patch is held in the memory of the PEs, one pixel
per PE. Every possible pixel value is matched in turn
and the number of responses is summed each time. The
summation operation used is one that produces the sums
of several bit columns simultaneously by spreading the
summation calculations across the array. In this way
the parallelism at each stage is kept as high as possible.
For a 1024 chip system this requires w 5ms although a
variant of the algorithm which holds several pixels per
PE is possible which allows the chip requirement to be
reduced.

FURTHER APPLICATIONS
GLiTCH has been applied to a number of other image
processing algorithms including the following;

• FFT [2],

• Convolution [1],

• Hough Transform [2],

• Voronoi diagrams,

• Image resampling [2],

• Image Generation [11].

CONCLUSIONS
The first GLITCH chips are expected during the
Summer of 1989. Due to funding constraints these chips
will only contain a small number of processing elements,
but will allow the design to be verified before fabrication
of the full device. It is envisaged that the full chips
will be incorporated into a transputer controlled test bed

237



where their performance over a range of image processing
tasks can be measured.

ACKNOWLEDGEMENTS
We wish to acknowledge the financial support of
the Science and Engineering Research Council, BP
International Limited and the MOD at RSRE for this
work.

References

[1] Duller A.W.G., Storer R., Thomson A.R. &
Dagless E.L. "An Associative Processor Array for
Image Processing" Image and Vision Computing
Vol. 7 No. 2 May 1989, Butterworth Press.

[2] Duller A.W.G., Storer R., Thomson A.R.,
Pout M.R. &: Dagless E.L. "Image Processing
Applications using an Associative Processor Array"
To be presented at AVC89.

[3] Hunt D.J. "The ICL DAP and its application to
image processing" Languages and Architectures for
Image Processing (Duff M.J.B., Levialdi S. eds),
Academic Press, London, 1981.

[4] Gostick R.W. "Software and algorithms for
Distributed-Array Processors" ICL Technical Jour-
nal, May 1979.

[5] Huertas A. & Medioni G. "Detection of
intensity changes with sub-pixel accuracy using
Laplacian-Gaussian masks" IEEE Trans. PAMI-8
No. 5 September 1986.

[6] Flanders P.M. "A unified approach to a class
of data movements on an array processor" IEEE
Trans. Comp. Vol. c-31 No. 9 September 1982.

[7] Foster C.C. Content Addressable Parallel Proces-
sors Van Nostrand Reinhold, New York 1976.

[8] Hockney R.W. and Jesshope C.R. Parallel
Computers Adam Hilger Ltd., Bristol, 1981.

[9] Reddaway S.F. "DAP - a distributed array
processor" 1st Annual Symposium on Computer Ar-
chitecture, (IEEE/ACM), Florida, 1973.

[10] Blair G.M. &: Denyer P.B.
"Content addressability: an exercise in the semantic
matching of hardware and software design" IEE
Computers and Digital Techniques Vol. 136 Pt. E
No. 1 pp 41-47 January 1989.

[11] Storer R., Duller A.W.G. & Dagless E.L.
"Image Generation with an Associative Processor
Array" Proceedings of CG International 88,
published as New Trends in Computer Graph-
ics, Ed. Magnenat-Thalmann N. & Thalmann D.,
(Springer-Verlag).

238


